The effects of hollow CeO₂ nanospheres on the flame-retardance and smoke-suppression properties of room-temperature-vulcanized (RTV) silicone rubber were studied. It was observed that the flame retardance of RTV silicone rubber composites was improved by hollow CeO₂ nanospheres. Surprisingly, the nanospheres also enhanced the smoke-suppression characteristics of the composites. The limited oxygen index of RTV/Mg(OH)₂ was raised from 23.7 to 25.9 by the addition of hollow CeO₂ nanospheres, while the smoke density was reduced markedly, from 35.1 to 17.6. The thermal stability and char yield of the RTV silicone rubber composites were characterized by thermogravimetric techniques. Furthermore, the degradation product of the composites was analyzed by pyrolysis-gas chromatography-mass spectroscopy. A mechanism to explain the observed results is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.15412 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.
View Article and Find Full Text PDFHeliyon
January 2025
College of Chemical Engineering, Zhejiang University of Technology, China.
Titania (TiO) is one of promising photo catalysts for its high ability to resistant photo corrosion and environmental friendliness, but its photocatalytic activity is too low to be used in industry. To find an approach to solve this problem, graphene oxide (GO), tungsten trioxide (WO) and TiO composite with hollow mesoporous structure was prepared by a two-step spray drying method. The composite was used as raw material to constitute a membrane onto ITO glass to form a membrane photo-anode.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Ecology and Environment, Tibet University, Lhasa, China.
Soil microbial communities play a vital role in accelerating nutrient cycling and stabilizing ecosystem functions in forests. However, the diversity of soil microbiome and the mechanisms driving their distribution patterns along elevational gradients in montane areas remain largely unknown. In this study, we investigated the soil microbial diversity along an elevational gradient from 650 m to 3,800 m above sea level in southeast Tibet, China, through DNA metabarcode sequencing of both the bacterial and fungal communities.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, PR China; Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea. Electronic address:
Photoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!