Effects of Hollow CeO₂ Nanospheres on Flame Retardance and Smoke Suppression of Room-Temperature-Vulcanized Silicone Rubber.

J Nanosci Nanotechnol

State Key Laboratory of Multi-Phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China.

Published: April 2019

The effects of hollow CeO₂ nanospheres on the flame-retardance and smoke-suppression properties of room-temperature-vulcanized (RTV) silicone rubber were studied. It was observed that the flame retardance of RTV silicone rubber composites was improved by hollow CeO₂ nanospheres. Surprisingly, the nanospheres also enhanced the smoke-suppression characteristics of the composites. The limited oxygen index of RTV/Mg(OH)₂ was raised from 23.7 to 25.9 by the addition of hollow CeO₂ nanospheres, while the smoke density was reduced markedly, from 35.1 to 17.6. The thermal stability and char yield of the RTV silicone rubber composites were characterized by thermogravimetric techniques. Furthermore, the degradation product of the composites was analyzed by pyrolysis-gas chromatography-mass spectroscopy. A mechanism to explain the observed results is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.15412DOI Listing

Publication Analysis

Top Keywords

hollow ceo₂
16
ceo₂ nanospheres
16
silicone rubber
16
rtv silicone
12
effects hollow
8
flame retardance
8
rubber composites
8
nanospheres
5
ceo₂
4
nanospheres flame
4

Similar Publications

Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.

View Article and Find Full Text PDF

Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.

View Article and Find Full Text PDF

Titania (TiO) is one of promising photo catalysts for its high ability to resistant photo corrosion and environmental friendliness, but its photocatalytic activity is too low to be used in industry. To find an approach to solve this problem, graphene oxide (GO), tungsten trioxide (WO) and TiO composite with hollow mesoporous structure was prepared by a two-step spray drying method. The composite was used as raw material to constitute a membrane onto ITO glass to form a membrane photo-anode.

View Article and Find Full Text PDF

Soil microbial communities play a vital role in accelerating nutrient cycling and stabilizing ecosystem functions in forests. However, the diversity of soil microbiome and the mechanisms driving their distribution patterns along elevational gradients in montane areas remain largely unknown. In this study, we investigated the soil microbial diversity along an elevational gradient from 650 m to 3,800 m above sea level in southeast Tibet, China, through DNA metabarcode sequencing of both the bacterial and fungal communities.

View Article and Find Full Text PDF

BiS/BiO(OH) nanorods with internal electric field throughout the entire bulk phase as photoelectrochemical sensing platforms for CYFRA21-1 immunoassay.

Anal Chim Acta

February 2025

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, PR China; Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea. Electronic address:

Photoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!