Conventional thin film transistor suffered from high threshold voltage, poor subthreshold swing, and high operation voltage. These shortcomings make the traditional thin film transistor does not meet the needs with the high-performance, high-resolution, low temperature and energy conservation nowadays. Due to the good selectivity of energy transformation and rapid heating rate, microwave annealing is promising to replace conventional furnace annealing and applied in the investigation. LaAlO₃/ZrO₂ is employed as gate electrode and gate dielectric layer for a-IGZO TFTs, under the premise that performance of a-IGZO TFTs without decreasing. With adjusting the power/time of microwave annealing, the effect on electrical characteristics of a-IGZO TFTs is investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.15994DOI Listing

Publication Analysis

Top Keywords

microwave annealing
12
a-igzo tfts
12
electrical characteristics
8
thin film
8
film transistor
8
investigation electrical
4
characteristics laalo₃/zro₂/igzo
4
tfts
4
laalo₃/zro₂/igzo tfts
4
tfts microwave
4

Similar Publications

Presently, researchers are placing emphasis on microwave absorption coating design while neglecting the research on materials that integrate both microwave absorption performance and mechanical properties. Here, robust FeSiAl/PEEK composites were prepared by a series process, including post ball-milling annealing, sol-gel method, and hot pressing. A detailed analysis of the electromagnetic (EM) parameters reveals the significant effects of morphology, filling ratio, and microstructure of FeSiAl on EM losses under a wide-temperature range.

View Article and Find Full Text PDF

Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Strontium-barium niobate (SrBaNbO) films are promising for microwave applications due to their high dielectric nonlinearity and low losses.
  • The films were synthesized on sapphire substrates using magnetron sputtering, and their structural features were analyzed through various methods, focusing on Brillouin light scattering.
  • Brillouin light scattering proved to be an effective nondestructive technique for examining the films' structures, allowing precise determination of their thickness and unique properties influenced by acoustic wave scattering.
View Article and Find Full Text PDF

In this paper, the ball-milled flake FeSiCr alloy is subjected to a vacuum annealing temperature between 300 and 500 °C. The results show that the appropriate heat treatment temperature increases the average grain size of the material, eliminates defects and internal stresses, and improves the complex permeability of the material. The optimum wave-absorbing performance of the material is achieved when the heat treatment temperature is 400 °C with the minimum reflectivity RL reaching -56.

View Article and Find Full Text PDF
Article Synopsis
  • Developing efficient photoanodes for solar water splitting is crucial, and this study focuses on creating p-n homojunction hematite photoanodes through a special doping and annealing process.
  • The resulting antimony-doped photoanodes show enhanced performance and transparency, achieving a stable photocurrent density of ~4.21 mA/cm² under sunlight, which is competitive with top existing designs.
  • A stack of six of these photoanodes collectively achieved a photocurrent density of ~10 mA/cm², indicating significant potential for practical applications in water splitting without needing external energy sources.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!