Cellulose/graphene oxide composite membranes (CGCMs) were prepared using a vacuum-filtration method. The CGCMs were then used as filters to remove organic pollutants from wastewater. It was found that the CGCM filters could efficiently and simultaneously achieve wastewater treatment and adsorbent separation. Their adsorption of Rhodamine B (RhB, an organic dye) varied with varying cellulose/graphene oxide mass ratios. The CGCM obtained at a cellulose/graphene oxide mass ratio of 8:1 exhibited the maximum removal efficiency for RhB. The maximum adsorption capacity of the CGCMs for RhB was found to be 86.4 mg/g. In addition, the CGCMs were easily regenerated and the regenerated CGCMs retained good abilities to remove contaminants, which could be significant for their application in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2019.15808 | DOI Listing |
Carbohydr Polym
March 2025
Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea. Electronic address:
The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, třída Tomáše Bati 5678, 76001 Zlín, Czech Republic.
Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Engineering, Science, and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, 39440-039 Janaúba, MG, Brazil; Pos-Graduate Program of Chemistry from Universidade Federal dos Vales do Jequitinhonha e Mucuri/UFVJM, Av. 01, 4050 Cidade Universitária, 39440-039 Janaúba, MG, Brazil. Electronic address:
The present research produced a new nanocomposite based on carboxymethyl cellulose (CMC) and graphene oxide (GO) for application in energy devices. A modified Hummers' method and two modifiers (UV radiation and heat temperature) were used. The nanocomposite was characterized by spectroscopies (FTIR, RAMAN, UV Vis), X-ray diffraction, morphological (SEM, TEM, DLS), and surface charge (ZP).
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India. Electronic address:
The avascular nature of cartilage tissue limits inherent regenerative capacity to counter any damage and this has become a substantial burden to the health of individuals. As a result, there is a high demand to repair and regenerate cartilage. Existing tissue engineering approaches for cartilage regeneration typically produce either microporous or nano-fibrous scaffolds lacking the desired biological outcome due to lack of biomimetic dual architecture of microporous construct with nano-fibrous interconnected structures like the native cartilage.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan. Electronic address:
Hydrogels are hydrophilic, insoluble, and highly porous 3D networks capable of absorbing large amounts of water. This study aimed to develop a carboxymethyl cellulose/graphene oxide (CMC/GO) hydrogel, cross-linked with citric acid and modified with zinc oxide (ZnO) nanoparticles (CMC/GO/ZnO), synthesized via the sol-gel method. The formulated composite hydrogel samples were characterized by Fourier transmittance infrared spectroscopy (FTIR), scanning electron microscopy (SEM) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermo-gravimetric analysis (TGA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!