Plants adapt to abiotic stresses by complex mechanisms involving various stress-responsive genes. Here, we identified a DEAD-box RNA helicase (RH) gene, , in , involved in salt-stress responses using activation tagging, a useful technique for isolating novel stress-responsive genes. AT895, an activation tagging line, was more tolerant than wild type (WT) under NaCl treatment during germination and seedling development, and was activated in AT895. AtRH17 possesses nine well-conserved motifs of DEAD-box RHs, consisting of motifs Q, I, Ia, Ib, and II-VI. Although at least 12 orthologs of have been found in various plant species, no paralog occurs in . AtRH17 protein is subcellularily localized in the nucleus. -overexpressing transgenic plants (OXs) were more tolerant to high concentrations of NaCl and LiCl compared with WT, but no differences from WT were detected among seedlings exposed to mannitol and freezing treatments. Moreover, in the mature plant stage, OXs were also more tolerant to NaCl than WT, but not to drought, suggesting that is involved specifically in the salt-stress response. Notably, transcriptions of well-known abscisic acid (ABA)-dependent and ABA-independent stress-response genes were similar or lower in OXs than WT under salt-stress treatments. Taken together, our findings suggest that AtRH17, a nuclear DEAD-box RH protein, is involved in salt-stress tolerance, and that its overexpression confers salt-stress tolerance via a pathway other than the well-known ABA-dependent and ABA-independent pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321491 | PMC |
http://dx.doi.org/10.3390/ijms19123777 | DOI Listing |
Plant Sci
December 2024
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China. Electronic address:
Hibiscus hamabo Sieb. et Zucc. (H.
View Article and Find Full Text PDFBackground And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.
Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.
Sci Rep
December 2024
Plant Production Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
Salinity stress adversely affects wheat growth and productivity, necessitating effective mitigation strategies. This study investigates the combined impact of ascorbic acid (AsA), silver nanoparticles (NPs), and Salvadora oleoides aqueous leaf extract (LE) on wheat tolerance to salinity stress. A randomized complete design (RCD) was employed with fourteen treatments: T1 (5 mM AsA), T2 (10 mM AsA), T3 (20 ppm AgNPs), T4 (40 ppm AgNPs), T5 (5% S.
View Article and Find Full Text PDFMetabolites
December 2024
School of Food Science and Engineering, Foshan University, Foshan 528231, China.
Background: is a member of the lactic acid bacterium group commonly found in many salt-fermented foods. Strains of isolated from high-salinity environments have been shown to tolerate salt stress to some extent. However, the specific responses and mechanisms of under salt stress are not fully understood.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Background: Laccases (LACs) are vital plant growth and development enzymes, participating in lignin biopolymerization and responding to stress. However, the role of LAC genes in plant development as well as stress tolerance, is still not well understood, particularly in sesame (Sesamum indicum L.), an important oilseed crop.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!