In this work, a piezoresistive sensor structure based on carbon black (CB)@polyurethane (PU) yarn material was developed. Specifically, CB@PU yarn was constructed by the polymer-mediated water-based electrostatic deposition method. The distribution of the yarn was artificially controlled to fabricate conductive networks. The CB conductive layer was efficiently supported by the net-like structure of PU yarn, thus generating collaborative advantage. The as-fabricated pressure sensor not only displayed compressibility of over 97%, but also detected a wide pressure change from 25 Pa to 20 kPa. Furthermore, this sensor exhibited response time of less than 70 ms and reproducibility of over 10,000 cycles. The advantages of the CB@PU network ensured this pressure-sensitive structure enormous potential application in pressure sensitive equipment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308453 | PMC |
http://dx.doi.org/10.3390/s18124141 | DOI Listing |
Int J Biol Macromol
January 2025
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
The importance of continuous and reliable pulse wave monitoring is constantly being increased in health signal monitoring and disease diagnoses. Flexible pressure sensors with high sensitivity, low hysteresis and fast response time are an effective means for monitoring pulses. Herein, a special wave-shaped layered porous structure of carbonized wood cellulose sponge (CWCS) was constructed based on natural wood (NW).
View Article and Find Full Text PDFLangmuir
January 2025
College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China.
In recent years, flexible pressure sensors have played an increasingly important role in human health monitoring. Inspired by traditional papermaking techniques, we have developed a highly flexible, low-cost, and ecofriendly flexible pressure sensor using shredded paper fibers as the substrate. By combining the properties of laser-induced graphene with the structure of paper fibers, we have improved the internal structure of pressure-sensitive paper and designed a conical surface microstructure, providing new insights into nanomaterial engineering.
View Article and Find Full Text PDFCurr Drug Deliv
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Background: Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressuresensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.
Methods: Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials.
Micromachines (Basel)
November 2024
Department of Microsystem Technology, University of Applied Sciences Berlin, 12459 Berlin, Germany.
Shock wave boundary/layer interactions (SWBLIs) are critical in high-speed aerodynamic flows, particularly within supersonic regimes, where unsteady dynamics can induce structural fatigue and degrade vehicle performance. Conventional measurement techniques, such as pressure-sensitive paint (PSP), face limitations in frequency response, calibration complexity, and intrusive instrumentation. Similarly, MEMS-based sensors, like Kulite sensors, present challenges in terms of intrusiveness, cost, and integration complexity.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
Since the 1980s, pressure-sensitive paint (PSP) has been used as an optical pressure sensor for measuring surface pressure on aircraft models in wind tunnels. Typically, PSPs have utilized platinum(II)-5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin due to its high pressure sensitivity, phosphorescence lifetime of ∼50 μs, reasonable quantum yield of emission, and resistance to photo-oxidation. This work investigates the photophysics and electronic structure of metal complexes of 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin, namely, Zn(II), Pd(II), and Ir(III), as potentially improved luminophores for polymer-based PSPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!