Enhanced Photoacoustic and Photothermal Effect of Functionalized Polypyrrole Nanoparticles for Near-Infrared Theranostic Treatment of Tumor.

Biomacromolecules

Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Faculty of Materials and Energy , Southwest University, Chongqing 400715 , China.

Published: January 2019

AI Article Synopsis

  • Functionalized nanomaterials that respond to near-infrared light show promise for combined therapy and diagnosis (theranostics) in tumor treatments, but creating ones that are both effective and biocompatible is challenging.
  • Researchers developed PEGylated indocyanine green (ICG)-loaded polypyrrole nanoparticles (PPI NPs) that demonstrated improved NIR responsiveness and biocompatibility for targeting tumors.
  • Through both cell studies and imaging assays, PPI NPs were shown to effectively accumulate in and destroy tumor cells using photothermal treatment, outperforming groups without ICG due to better retention in the tumor area.

Article Abstract

Functionalized nanomaterials with near-infrared (NIR) responsive capacity are quite promising for theranostic treatment of tumors, but formation of NIR responsive nanomaterials with enhanced theranostic ability and excellent biocompatibility is still very challenging. Herein, PEGylated indocyanine green (ICG)-loaded polypyrrole nanoparticles (PPI NPs) were designed and successfully formed through selecting polydopamine as the linkage between each component, demonstrating enhanced NIR responsive theranostic ability against tumor. By combining in vitro cell study with in vivo assay, the formed PPI NPs were proven to be fantastically biocompatible while effectively internalization in HeLa cells and retention in HeLa tumor were demonstrated by in vitro flow cytometry/confocal measurement and in vivo photoacoustic imaging assay. With the guidance of photoacoustic imaging, successful photothermal ablation of tumor was achieved by treatment with PPI NPs plus laser, which was much more effective than the group treated with NPs free of ICG. The combined enhanced photoacoustic and photothermal effect is mainly ascribed to the functionalized polypyrrole nanoparticles, which could accumulate in the tumor site more effectively with a relatively longer retention time taking advantage of the nanomaterial-induced endothelial leakiness phenomenon. All these results demonstrating that this designed PPI NPs possessing enhanced NIR responsive property hold great promise for tumor NIR theranostic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.8b01453DOI Listing

Publication Analysis

Top Keywords

nir responsive
16
ppi nps
16
polypyrrole nanoparticles
12
enhanced photoacoustic
8
photoacoustic photothermal
8
functionalized polypyrrole
8
theranostic treatment
8
theranostic ability
8
enhanced nir
8
photoacoustic imaging
8

Similar Publications

Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).

View Article and Find Full Text PDF

Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin.

ACS Nano

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.

Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation.

View Article and Find Full Text PDF

NIR-Activated Hydrogel with Dual-Enhanced Antibiotic Effectiveness for Thorough Elimination of Antibiotic-Resistant Bacteria.

ACS Appl Mater Interfaces

January 2025

Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai 200072, China.

Antibiotic resistance has become a critical health crisis globally. Traditional strategies using antibiotics can lead to drug-resistance, while inorganic antimicrobial agents can cause severe systemic toxicity. Here, we have developed a dual-antibiotic hydrogel delivery system (PDA-Ag@Levo/CMCS), which can achieve controlled release of clinical antibiotics levofloxacin (Levo) and classic nanoscale antibiotic silver nanoparticles (AgNPs), effectively eliminating drug-resistant .

View Article and Find Full Text PDF

This paper presents the development of near-infrared (NIR) fluorescent probes, and , engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes and exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 () and 702 nm (), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments.

View Article and Find Full Text PDF

Rational Design of NIR-II Fluorescence/Photoacoustic Nanosensor Tailored for Mechanisms of Diabetes-Related Breast Cancer.

Adv Mater

January 2025

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.

Breast cancer (BC) is the second most common cause of cancer induced death worldwide. Current statistics has disclosed that the diabetic BC patients have significantly worse survival rate compared with nondiabetic BC patients. However, the specific mechanism is still being explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!