A fast, scalable, and safer C -H oxidation of activated and un-activated aliphatic chains can be enabled by methyl(trifluoromethyl)dioxirane (TFDO). The continuous flow platform allows the in situ generation of TFDO gas and its rapid reactivity toward tertiary and benzylic Csp -H bonds. The process exhibits a broad scope and good functional group compatibility (28 examples, 8-99 %). The scalability of this methodology is demonstrated on 2.5 g scale oxidation of adamantane.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201805657DOI Listing

Publication Analysis

Top Keywords

csp bonds
8
direct oxidation
4
oxidation csp
4
bonds situ
4
situ generated
4
generated trifluoromethylated
4
trifluoromethylated dioxirane
4
dioxirane flow
4
flow fast
4
fast scalable
4

Similar Publications

Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP.

View Article and Find Full Text PDF

Bonding super translucent multilayered monolithic zirconia to different foundation materials: an invitro study.

BMC Oral Health

December 2024

Department of Fixed Prosthodontics, Faculty of Dentistry, Mansoura University, Mansoura, Dakahlia Governorate, Egypt.

Background: The objective of this study was to investigate the effect of bonded substrate, zirconia surface conditioning and the interaction between them on the shear bond strength of monolithic zirconia.

Methods: Forty-eight monolithic zirconia discs were CAD-CAM fabricated and divided into two groups according to surface treatment either as milled and universal primer application (Monobond N, Ivoclar-Vivadent) (P) or sandblasting then universal primer application (Monobond N) (SP). Each main group was further divided into three test groups according to the bonded substrate: dentin (DSP, DP), composite (CSP, CP) or resin modified glass ionomer (RMGI) (GSP, GP).

View Article and Find Full Text PDF

This study investigates possible pathways arising from the reaction of anionic K[Pt(C^N)(-MeCH)(CN)] complexes, C^N = 2-phenylpyridinate (ppy) and 7,8-benzo[h]quinolate (bzq), with trifluoroacetic acid (TFA), which has been employed in both experimental and computational approaches. Experimental studies clarify that the products of the protonolysis reaction can vary in the K[Pt(C^N)(-MeCH)(CN)] complex depending on the type of the cyclometalated ligand. In the cyclometalated complex with ppy, only one product was observed, resulting from the cleavage of the Pt-C bond of the cyclometalated ligand.

View Article and Find Full Text PDF

Predicting co-crystal structures of N-halide phthalimides with 3,5-dimethylpyridine.

Acta Crystallogr B Struct Sci Cryst Eng Mater

December 2024

Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, 121205, Russian Federation.

Crystal structure prediction (CSP) calculations were carried out to examine potential formation of co-crystals between N-halide phthalimides (Cl, Br or I) and 3,5-dimethylpyridine (35DMP). The co-crystal structure of N-bromophthalimide (nbp) with 35DMP (nbp-35DMP) is known, and the generated co-crystal structure of rank 1 is identical to experimental structure (VELXES). For the unknown crystal structure of N-iodophthalimide (nip), structure of rank 1 is suggested as a likely co-crystal structure.

View Article and Find Full Text PDF

Metal Additive-Free Iodine-Promoted Reorganization of Ynamide-Ynes and Stereoselective 1,2-Diiodination.

Chem Asian J

November 2024

Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.

We report a metal additive-free iodine-promoted one-step structural reorganization of ynamide-ynes and simultaneous stereoselective 1,2-diiodination of the migrated alkyne to form stereospecific tetrasubstituted alkenyl diiodo-tethered indoles (E-isomer). Molecular iodine is cost effective, user friendly, less toxic, commercially available, and easy to handle. The key features of the reaction include metal-and additive-free environment, selectivity, structural reorganization, mild reaction conditions, simple workup, and gram-scale synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!