Parkinson's disease (PD) is a progressive neurodegenerative disorder pathologically characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Chronic neuroinflammation is one of the hallmarks of PD pathophysiology. Cathepsin D (CathD), a soluble aspartic protease, has been reported to play an important role in neurodegenerative diseases such as PD. This research focuses on the role of CathD and the molecular mechanisms involved in the process of neuroinflammation and neurotoxicity. We use 1-methyl-4phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-challenged mice and lipopolysaccharide (LPS)-induced murine microglia BV2 cells as the in vivo and in vitro models, respectively. The effect of CathD on the neuroinflammation, cytotoxicity and the underlying mechanisms associated with NF-κB signalling pathway are investigated. Data showed that MPTP induces motor deficit, inflammation and depletion of dopaminergic neurons in PD model mice. Notably, cathD was overexpressed in the SNpc of MPTP-induced PD mice and was highly expressing in LPS-stimulated primary microglial cells and BV-2 cells. Furthermore, knockdown of CathD with lentiviral transduction inhibited LPS-induced neuroinflammation through inhibition of NF-κB signalling pathway primarily by regulating the NF-κB p65 nuclear translocation both in BV-2 and primary microglial cells. Additionally, knockdown of CathD protected the activated-microglia induced dopaminergic neurons MN9D cells from neurotoxicity as well as apoptosis. Our findings bring a new insight into understanding the complex mechanisms underlying the pathogenesis of PD and provide a novel target to attenuate the excessive neuroinflammatory responses in the treatment of PD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.13052DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
16
nf-κb signalling
12
signalling pathway
12
inhibition nf-κb
8
parkinson's disease
8
primary microglial
8
microglial cells
8
knockdown cathd
8
cathd
6
cells
5

Similar Publications

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!