Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human rhinovirus infection (HRVI) plays an important role in asthma exacerbations and is thought to be involved in asthma development during early childhood. We hypothesized that HRVI causes differential DNA methylation and subsequently differential mRNA expression in epithelial cells of children with asthma. Primary nasal epithelial cells from children with (n = 10) and without (n = 10) asthma were cultivated up to passage two and infected with Rhinovirus-16 (RV-16). HRVI-induced genome-wide differences of DNA methylation in asthmatics (vs. controls) and resulting mRNA expression were analyzed by the HumanMethylation450 BeadChip Kit (Illumina) and RNA sequencing. These results were further verified by pyrosequencing and quantitative PCR, respectively. 471 CpGs belonging to 268 genes were identified to have HRVI-induced asthma-specifically modified DNA methylation and mRNA expression. A minimum-change criteria was applied to restrict assessment of genes with changes in DNA methylation and mRNA expression of at least 3% and least 0.1 reads/kb per million mapped reads, respectively. Using this approach we identified 16 CpGs, including HLA-B-associated transcript 3 (BAT3) and Neuraminidase 1 (NEU1), involved in host immune response against HRVI. HRVI in nasal epithelial cells leads to specific modifications of DNA methylation with altered mRNA expression in children with asthma. The HRVI-induced alterations in DNA methylation occurred in genes involved in the host immune response against viral infections and asthma pathogenesis. The findings of our pilot study may partially explain how HRVI contribute to the persistence and progression of asthma, and aid to identify possible new therapeutic targets. The promising findings of this pilot study would benefit from replication in a larger cohort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261460 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205275 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!