The ability to study single particles has revolutionized nanoscience. The advantage of single particle spectroscopy measurements compared to conventional ensemble studies is that they remove averaging effects from the different sizes and shapes that are present in the samples. In time-resolved experiments this is important for unraveling homogeneous and inhomogeneous broadening effects in lifetime measurements. In this report, recent progress in the development of ultrafast time-resolved spectroscopic techniques for interrogating single nanostructures will be discussed. The techniques include far-field experiments that utilize high numerical aperture (NA) microscope objectives, near-field scanning optical microscopy (NSOM) measurements, ultrafast electron microscopy (UEM), and time-resolved x-ray diffraction experiments. Examples will be given of the application of these techniques to studying energy relaxation processes in nanoparticles, and the motion of plasmons, excitons and/or charge carriers in different types of nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6633/aaea4b | DOI Listing |
J Nanobiotechnology
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
MILs (Materials Institute Lavoisier), as nanocarriers based on metal-organic frameworks (MOFs), are one of the most advanced drug delivery vehicles that are now a major part of cancer treatment research. This review article highlights the key features and components of MIL nanocarriers for the development and improvement of these nanocarriers for drug delivery. Surface coatings are one of the key components of MIL nanocarriers, which play the role of stabilizing the nanocarrier, pH-dependent drug release, increasing the half-life of the drug, and targeting the carrier.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.
View Article and Find Full Text PDFVet Res Commun
January 2025
Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
The current study investigated the effect of a single administration of human chorionic gonadotropin hormone (hCG) and its nanoparticles (NPs) on testicular hemodynamics using Doppler ultrasonography, testicular volume, testicular echotexture (PIX), and circulating testosterone and nitric oxide (NO) in pubescent goat bucks during summer months. Fifteen Baladi goats were divided into three groups (5 in each) and subjected to a single intramuscular administration of one ml of physiological saline ( control group), one ml containing 500 IU of hCG (hCG group) or one ml containing 125 IU of hCG NPs (hCG NPs group). Testicular hemodynamics assessment was done just before administration (0 h), and at 2, 4, 6, 24, and daily till 7 days after administration.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.
Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!