Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metallic lithium (Li) and sodium (Na) anodes have received great attention as ideal anodes to meet the needs for high energy density batteries due to their highest theoretical capacities. Although many approaches have successfully improved the performances of Li or Na metal anodes, many of these methods are difficult to scale up and thus cannot be applied in the production of batteries in practice. In this work, we introduce nanocrevasses in a carbon fiber scaffold which can facilitate the penetration of molten alkali metal into a carbon scaffold by enhancing its wettability for Li/Na metal. The resulting alkali metal/carbon composites exhibit stable long-term cycling over hundreds of cycles. The facile synthetic method is enabled for scalable production using recycled metal waste. Thus, the addition of nanocrevasses to carbon fiber as a scaffold for alkali metals can generate environmentally friendly and cost-effective composites for practical electrode applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b04106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!