Spurred by recent progress in medicinal chemistry, numerous lead compounds have sprung up in the past few years, although the majority are hindered by hydrophobicity, which greatly challenges druggability. In an effort to assess the potential of platinum (Pt) candidates, the nanosizing approach to alter the pharmacology of hydrophobic Pt(IV) prodrugs in discovery and development settings is described. The construction of a self-assembled nanoparticle (NP) platform, composed of amphiphilic lipid-polyethylene glycol (PEG) for effective delivery of Pt(IV) prodrugs capable of resisting thiol-mediated detoxification through a glutathione (GSH)-exhausting effect, offers a promising route to synergistically improving safety and efficacy. After a systematic screening, the optimized NPs (referred to as P6 NPs) exhibited small particle size (99.3 nm), high Pt loading (11.24%), reliable dynamic stability (∼7 days), and rapid redox-triggered release (∼80% in 3 days). Subsequent experiments on cells support the emergence of P6 NPs as a highly effective means of transporting a lethal dose of cargo across cytomembranes through macropinocytosis. Upon reduction by cytoplasmic reductants, particularly GSH, P6 NPs under disintegration released sufficient active Pt(II) metabolites, which covalently bound to target DNA and induced significant apoptosis. The PEGylation endowed P6 NPs with in vivo longevity and tumor specificity, which were essential to successfully inhibiting the growth of cisplatin-sensitive and -resistant xenograft tumors, while effectively alleviating toxic side-effects associated with cisplatin. P6 NPs are, therefore, promising for overcoming the bottleneck in the development of Pt drugs for oncotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049173 | PMC |
http://dx.doi.org/10.1021/acsnano.8b06400 | DOI Listing |
Acta Biomater
December 2024
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China. Electronic address:
Platinum (Pt)-based anticancer agents exhibit a lack of selectivity in the treatment of osteosarcoma, resulting in significant toxicity. Furthermore, immune surveillance withinthe tumor microenvironment impedes the uptake of platinum drugs by osteosarcoma cells. To overcome these challenges, an oxaliplatin-based Pt prodrug amphiphile (Lipo-OXA-ALN) was designed and synthesized by incorporatingan osteosarcoma-targeting alendronate (ALN) alongside a lipid tail.
View Article and Find Full Text PDFActa Biomater
December 2024
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China. Electronic address:
Drug resistance and off-target toxicity of cisplatin (CDDP) pose significant challenges in effectively treating non-small cell lung cancer (NSCLC). Recently, chemodynamic therapy (CDT), an emerging reactive oxygen species (ROS)-mediated tumor-specific therapeutic modality, has shown great potential in sensitizing multidrug resistance tumor cells. Herein, a glutathione (GSH)-responsive Pt(IV) prodrug-based oxidative stress nanoamplifier (CuBSO@Pt) was developed for effective chemo/chemodynamic therapy to reverse CDDP resistance in NSCLC.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China; Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China. Electronic address:
Cisplatin-based neoadjuvant chemotherapy is first-line strategy to inhibit progression and metastasis of muscle-invasive bladder cancer (MIBC). However, its clinical efficacy is often limited by drug resistance and severe systemic side effects, highlighting the urgent need for innovative therapeutic approaches. Despite advancements in cisplatin-based regimens, research on intravesical cisplatin delivery systems remains scarce.
View Article and Find Full Text PDFAAPS PharmSciTech
December 2024
Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67 S.A.S., Nagar, Punjab, 160062, India.
Triple negative breast cancer (TNBC) exhibits higher susceptibility towards oxaliplatin (OXA) due to a faulty DNA damage repair system. However, the unfavorable physicochemical properties and risk of toxicities limit the clinical utility of OXA. Therefore, to impart kinetic inertness, site-specific delivery, and multidrug action, an octahedral Pt(IV) prodrug was developed by using chlorambucil (CBL) as a choice of ligand.
View Article and Find Full Text PDFDalton Trans
November 2024
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
The development of multi-functional Pt(IV) complexes as chemotherapeutic agents has gained growing attention in medical oncology. However, the design of multi-functional tumor-targeted Pt(IV) complexes with high hydrolytic stability remains challenging. Herein, we have developed a Pt(IV) prodrug conjugated with vorinostat as a multi-functional cancer therapeutic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!