Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate how the geometric shape of a rod in a nematic liquid crystal can stabilise a large number of oppositely charged topological defects. A rod is of the same shape as a sphere, both having genus g = 0, which means that the sum of all topological charges of defects on a rod has to be -1 according to the Gauss-Bonnet theorem. If the rod is straight, it usually shows only one hyperbolic hedgehog or a Saturn ring defect with negative unit charge. Multiple unit charges can be stabilised either by friction or large length, which screens the pair-interaction of unit charges. Here we show that the curved shape of helical colloids or the grooved surface of a straight rod create energy barriers between neighbouring defects and prevent their annihilation. The experiments also clearly support the Gauss-Bonnet theorem and show that topological defects on helices or grooved rods always appear in an odd number of unit topological charges with a total topological charge of -1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm01583j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!