Remarkable pressure-induced emission enhancement based on intermolecular charge transfer in halogen bond-driven dual-component co-crystals.

Phys Chem Chem Phys

State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699 Qianjin Street, Changchun, P. R. China.

Published: December 2018

A series of two-component co-crystals driven by IN interactions based on the bipyridine (BIPY) chromophore with one among three different co-former building blocks, iodopentafluorobenzene (IPFB), 1,4-diiodotetrafluorobenzene (DITFB) and 1,3,5-trifluoro-2,4,6-triiodobenzene (IFB), were prepared and analysed via infared spectroscopy and single-crystal X-ray diffraction. By comparing the IN distances in the co-crystal structures, we found that the higher the -F ratio in the building blocks the closer the contact of the IN bond, enhancing the intermolecular interactions in these co-crystals as well. That is, the positive electrostatic potential on the iodine atom(s) in the co-formers was enhanced by the presence of strong electron-withdrawing groups. The distinct spectroscopic behaviours (fluorescence and Raman spectra) among the two-component BIPY co-crystal systems in response to hydrostatic pressure were also investigated. Interestingly, the fluorescence of BIPY-DITFB presented intriguing abnormal evolution from dark to bright, suggesting a new charge transfer state due to the decreased intermolecular distance and the enhanced IN interactions. Theoretical simulations by Materials Studio also showed the shortened IN distance and the increased angle of C-IN, evidencing the enhanced IN interactions. In contrast, BIPY-IFB showed only slightly enhanced fluorescence intensity at 550 nm consistent with BIPY-DITFB. Once the pressure was relieved, both the Raman and fluorescence spectra for BIPY co-crystal systems entirely self-recovered. Remarkable emission enhancement in a solid-state co-crystal has been rarely reported in previous publications and in fact, this study paves a unique way for designing and developing novel stimuli-responsive photo-functional materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp06363jDOI Listing

Publication Analysis

Top Keywords

emission enhancement
8
charge transfer
8
building blocks
8
bipy co-crystal
8
co-crystal systems
8
enhanced interactions
8
remarkable pressure-induced
4
pressure-induced emission
4
enhancement based
4
based intermolecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!