Background: Synchrotron hydroxyl radical footprinting is a relatively new structural method used to investigate structural features and conformational changes of nucleic acids and proteins in the solution state. It was originally developed at the National Synchrotron Light Source at Brookhaven National Laboratory in the late nineties, and more recently, has been established at the Advanced Light Source at Lawrence Berkeley National Laboratory. The instrumentation for this method is an active area of development, and includes methods to increase dose to the samples while implementing high-throughput sample delivery methods.
Conclusion: Improving instrumentation to irradiate biological samples in real time using a sample droplet generator and inline fluorescence monitoring to rapidly determine dose response curves for samples will significantly increase the range of biological problems that can be investigated using synchrotron hydroxyl radical footprinting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655235 | PMC |
http://dx.doi.org/10.2174/0929866526666181128125725 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.
Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).
Mater Today Bio
February 2025
Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
Chemodynamic therapy (CDT) is an emerging antitumor strategy utilizing iron-initiated Fenton reaction to destroy tumor cells by converting endogenous HO into highly toxic hydroxyl radical (OH). However, the intratumoral overexpressed glutathione (GSH) and deficient acid greatly reduce CDT efficacy because of OH scavenging and decreased OH production efficiency. Even worse, the various physiological barriers, especially in glioma, further put the brakes on the targeted delivery of Fenton agents.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China.
It is well known that hydroxyl radical (OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/HO organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that OH can be unequivocally generated by incubation of HO and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh.
Heliotropium indicum is well-known for its diverse medicinal properties, traditionally utilized to treat ailments such as diabetes, obesity, bacterial infections, inflammation, and diarrhea. This study aims to explore the anti-inflammatory effects of the extract using in vitro methods and to assess its drug-likeness potential using docking, PASS and ADME. Fractionations of crude methanol extract (CME) were undertaken in n-hexane (NHF), chloroform (CHF), and ethyl acetate (EAF).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
Sewer overflows are a potential source of emerging contaminants to urban waters, posing a threat to ecosystems and human health. Herein, the performance and mechanism of ferrate(Ⅵ) (Fe(Ⅵ))/peroxymonosulfate (PMS), Fe(Ⅵ)/peroxydisulfate (PDS), and Fe(Ⅵ)/percarbonate (SPC) for the degradation of ofloxacin (OFL) in overflows were comparatively investigated. These systems achieved efficient degradation of OFL and the removal of conventional pollutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!