Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry.

Protein Pept Lett

Department of Chemistry, Washington University, St. Louis, MO 63130, United States.

Published: March 2019

AI Article Synopsis

Article Abstract

Background: Determination of the composition and some structural features of macromolecules can be achieved by using structural proteomics approaches coupled with mass spectrometry (MS). One approach is hydroxyl radical protein footprinting whereby amino-acid side chains are modified with reactive reagents to modify irreversibly a protein side chain. The outcomes, when deciphered with mass-spectrometry-based proteomics, can increase our knowledge of structure, assembly, and conformational dynamics of macromolecules in solution. Generating the hydroxyl radicals by laser irradiation, Hambly and Gross developed the approach of Fast Photochemical Oxidation of Proteins (FPOP), which labels proteins on the sub millisecond time scale and provides, with MS analysis, deeper understanding of protein structure and protein-ligand and protein- protein interactions. This review highlights the fundamentals of FPOP and provides descriptions of hydroxyl-radical and other radical and carbene generation, of the hydroxyl labeling of proteins, and of determination of protein modification sites. We also summarize some recent applications of FPOP coupled with MS in protein footprinting.

Conclusion: We survey results that show the capability of FPOP for qualitatively measuring protein solvent accessibility on the residue level. To make these approaches more valuable, we describe recent method developments that increase FPOP's quantitative capacity and increase the spatial protein sequence coverage. To improve FPOP further, several new labeling reagents including carbenes and other radicals have been developed. These growing improvements will allow oxidative- footprinting methods coupled with MS to play an increasingly significant role in determining the structure and dynamics of macromolecules and their assemblies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497727PMC
http://dx.doi.org/10.2174/0929866526666181128124554DOI Listing

Publication Analysis

Top Keywords

fast photochemical
8
photochemical oxidation
8
oxidation proteins
8
coupled mass
8
mass spectrometry
8
protein
8
dynamics macromolecules
8
fpop
5
proteins
4
coupled
4

Similar Publications

A Rod-like BiO Photocatalyst Derived from Bi-Based MOFs for the Efficient Adsorption and Catalytic Reduction of Cr(VI).

Int J Mol Sci

December 2024

Yunnan Province Engineering Research Center of Photocatalytic Treatment of Industrial Wastewater, Yunnan University, Kunming 650091, China.

Heavy metal ion pollution poses a serious threat to the natural environment and human health. Photoreduction through Bi-based photocatalysts is regarded as an advanced green technology for solving environmental problems. However, their photocatalytic activity is limited by the rapid recombination of photogenerated e and h pairs and a low photo-quantum efficiency.

View Article and Find Full Text PDF

Photocrosslinkable Biomaterials for 3D Bioprinting: Mechanisms, Recent Advances, and Future Prospects.

Int J Mol Sci

November 2024

Division of Vascular Surgery, Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.

Constructing scaffolds with the desired structures and functions is one of the main goals of tissue engineering. Three-dimensional (3D) bioprinting is a promising technology that enables the personalized fabrication of devices with regulated biological and mechanical characteristics similar to natural tissues/organs. To date, 3D bioprinting has been widely explored for biomedical applications like tissue engineering, drug delivery, drug screening, and in vitro disease model construction.

View Article and Find Full Text PDF

The microalga sp. (Chlorophyceae) was cultured in a raceway pond (RWP) placed in a greenhouse. The objective of this case study was to monitor the photosynthesis performance and selected physicochemical variables (irradiance, temperature, dissolved oxygen concentration) of microalgae cultures in situ at various depths of RWP.

View Article and Find Full Text PDF

Photochemical initiation of polariton-mediated exciton propagation.

Nanophotonics

June 2024

Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.

Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light-matter quasi-particles with low effective masses and very high group velocities. While in experiments, polariton propagation is typically initiated with laser pulses, tuned to be resonant either with the polaritonic branches that are delocalized over many molecules, or with an uncoupled higher-energy electronic excited state that is localized on a single molecule, practical implementations of polariton-mediated exciton transport into devices would require operation under low-intensity incoherent light conditions. Here, we propose to initiate polaritonic exciton transport with a photo-acid, which upon absorption of a photon in a spectral range not strongly reflected by the cavity mirrors, undergoes ultra-fast excited-state proton transfer into a red-shifted excited-state photo-product that can couple collectively with a large number of suitable dye molecules to the modes of the cavity.

View Article and Find Full Text PDF

Biomass-burning organic aerosol(s) (BBOA) are rich in brown carbon, which significantly absorbs solar irradiation and potentially accelerates global warming. Despite its importance, the multiphase photochemistry of BBOA after light absorption remains poorly understood due to challenges in determining the oxidant concentrations and the reaction kinetics within aerosol particles. In this study, we explored the photochemical reactivity of BBOA particles in multiphase S(IV) oxidation to sulfate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!