Background: First developed in the 1990's at the National Synchrotron Light Source, xray synchrotron footprinting is an ideal technique for the analysis of solution-state structure and dynamics of macromolecules. Hydroxyl radicals generated in aqueous samples by intense x-ray beams serve as fine probes of solvent accessibility, rapidly and irreversibly reacting with solvent exposed residues to provide a "snapshot" of the sample state at the time of exposure. Over the last few decades, improvements in instrumentation to expand the technology have continuously pushed the boundaries of biological systems that can be studied using the technique.
Conclusion: Dedicated synchrotron beamlines provide important resources for examining fundamental biological mechanisms of folding, ligand binding, catalysis, transcription, translation, and macromolecular assembly. The legacy of synchrotron footprinting at NSLS has led to significant improvement in our understanding of many biological systems, from identifying key structural components in enzymes and transporters to in vivo studies of ribosome assembly. This work continues at the XFP (17-BM) beamline at NSLS-II and facilities at ALS, which are currently accepting proposals for use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929866526666181128125125 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.
ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation.
View Article and Find Full Text PDFAnal Chem
December 2024
Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, United States.
Hydroxyl radical-based protein footprinting (HRPF) coupled with mass spectrometry is a valuable medium-resolution technique in structural biology, facilitating the assessment of protein structure and molecular-level interactions in solution conditions. In HRPF with X-rays (XFP), hydroxyl radicals generated by water radiolysis covalently label multiple amino acid (AA) side chains. However, HRPF technologies face challenges in achieving their full potential due to the broad (>10) dynamic range of AA reactivity with OH and difficulty in detecting slightly modified residues, most notably in peptides with highly reactive residues like methionine, or where all residues have low OH reactivities.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Biomedical Engineering, University of Houston, United States.
Lactate levels in humans reveal intensity and duration of exertion and provide a critical readout for the severity of life-threatening illnesses such as pediatric sepsis. Using the lactate oxidase enzyme (Lox) from , we demonstrated its functionality for lactate electrochemical sensing in physiological fluids in a lab setting. The structure and dynamics of LOx were validated by crystallography, X-ray scattering, and hydroxyl radical protein footprinting.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
March 2024
Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.
Hydroxyl radical protein footprinting (HRPF) using synchrotron X-ray radiation (XFP) and mass spectrometry is a well-validated structural biology method that provides critical insights into macromolecular structural dynamics, such as determining binding sites, measuring affinity, and mapping epitopes. Numerous alternative sources for generating the hydroxyl radicals (•OH) needed for HRPF, such as laser photolysis and plasma irradiation, complement synchrotron-based HRPF, and a recently developed commercially available instrument based on flash lamp photolysis, the FOX system, enables access to laboratory benchtop HRPF. Here, we evaluate performing HRPF experiments in-house with a benchtop FOX instrument compared to synchrotron-based X-ray footprinting at the NSLS-II XFP beamline.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2023
Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA. Electronic address:
Hydroxyl radical protein footprinting (HRPF) using synchrotron radiation is a well-validated method to assess protein structure in the native solution state. In this method, X-ray radiolysis of water generates hydroxyl radicals that can react with solvent accessible side chains of proteins, with mass spectrometry used to detect the resulting labeled products. An ideal footprinting dose provides sufficient labeling to measure the structure but not so much as to influence the results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!