A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix, and immune response. | LitMetric

Adipose tissue is hypothesized to play a vital role in regulation of feed efficiency (FE; efficiency in converting energy and nutrients into tissue), of which improvement will simultaneously reduce environmental impact and feed cost per pig. The objective of the present study was to sequence the subcutaneous adipose tissue transcriptome in FE-divergent pigs (n = 16) and identify relevant biological processes underpinning observed differences in FE. We previously demonstrated that high-FE pigs were associated with lower fatness when compared to their counterparts. Here, ontology analysis of a total of 209 annotated genes that were differentially expressed at a p < 0.01 revealed establishment of a dense extracellular matrix and inhibition of capillary formation as one underlying mechanism to achieve suppressed adipogenesis. Moreover, mechanisms ensuring an efficient utilization of lipids in high-FE pigs might be orchestrated by upstream regulators including CEBPA and EGF. Consequently, high-FE adipose tissue could exhibit more efficient cholesterol disposal, whilst inhibition of inflammatory and immune response in high-FE pigs may be an indicator of an optimally functioning adipose tissue. Taken together, adipose tissue growth, extracellular matrix formation, lipid metabolism and inflammatory and immune response are key biological events underpinning the differences in FE. Further investigations focusing on elucidating these processes would assist the animal production industry in optimizing strategies related to nutrient utilization and product quality.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-018-1515-5DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
feed efficiency
8
transcriptome analysis
4
adipose
4
analysis adipose
4
tissue
4
tissue pigs
4
pigs divergent
4
divergent feed
4
efficiency reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!