Accumulating evidence has highlighted the critical role of cullin 4B (CUL4B) in driving tumourigenesis in several malignancies, including gastric cancer (GC); however, the mechanisms underlying CUL4B upregulation remain unclear. The dysregulation of microRNAs (miRNAs or miRs) is known to be involved in tumourigenesis. In this study, we report that the expression of miR‑381 and miR‑489 is downregulated and is negatively correlated with that of CUL4B in GC tissues and cell lines. Further analysis verified that miR‑381 and miR‑489 directly targeted CUL4B. CUL4B silencing inhibited cell proliferation, migration and invasion by inactivating the Wnt/β‑catenin pathway. miR‑381/miR‑489 overexpression recapitulated the effects of CUL4B silencing, while CUL4B restoration negated the suppressive effects induced by the ectopic expression of miR‑381/miR‑489. Furthermore, miR‑381/miR‑489 exerted tumour suppressive functions by inactivating the Wnt/β‑catenin pathway through the targeting of CUL4B. Taken together, the findings of this study suggest that the miR‑381/miR‑489‑mediated expression of CUL4B modulates the proliferation and invasion of GC cells via the Wnt/β‑catenin pathway, which indicates that the miR‑381/miR‑489‑CUL4B axis is critical in the control of GC tumourigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2018.4646DOI Listing

Publication Analysis

Top Keywords

wnt/β‑catenin pathway
16
mir‑381 mir‑489
12
cul4b
10
cell proliferation
8
proliferation invasion
8
targeting cul4b
8
cul4b silencing
8
inactivating wnt/β‑catenin
8
mir‑489 suppress
4
suppress cell
4

Similar Publications

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

ALKBH5 facilitates tumor progression via an m6A-YTHDC1-dependent mechanism in glioma.

Cancer Lett

January 2025

Department of Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China. Electronic address:

N-methyladenosine (m6A) methylation, is a well-known epigenetic modification involved in various biological processes, including tumorigenesis. However, the role of AlkB homolog 5 (ALKBH5), a critical component of m6A modification, remains unclear in glioma. This study investigates the function of ALKBH5 in glioma progression and its potential as a therapeutic target.

View Article and Find Full Text PDF

Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear.

Dev Biol

January 2025

Biology Department, Texas A&M University, College Station, TX 7843-3258. Electronic address:

During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors.

View Article and Find Full Text PDF

Endocytosis of Wnt ligands from surrounding epithelial cells positions microtubule nucleation sites at dendrite branch points.

PLoS Biol

January 2025

Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.

Microtubule nucleation is important for microtubule organization in dendrites and for neuronal injury responses. The core nucleation protein, γTubulin (γTub), is localized to dendrite branch points in Drosophila sensory neurons by Wnt receptors and scaffolding proteins on endosomes. However, whether Wnt ligands are important is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!