Purpose: To investigate exogenous ATP-dependent activation of NLRP3 inflammasome and interleukin-1β ( IL-1β) secretion in P.gingivalis infected and heat-killed P.gingivalis induced gingival fibroblasts cells ( hGFs) in vitro.
Methods: Gingival tissues were obtained from healthy patients and hGFs were cultured in vitro with tissue block method to harvest primary cells. HGFs was simulated by being treated with 100 MOI live P.gingivalis or 100 MOI heat-killed P.gingivalis (HP.gingivalis) after 5 mmol/L ATP pre-treatment. Real-time PCR was carried out to assess mRNA expression of NLRP3, ASC, caspase-1 and IL-1β. The protein level of NLRP3 , caspase-1 and IL-1β was evaluated by Western blot. IL-1β secretion was measured using ELISA. Statistical analysis was performed using Graphpad prism 6 statistical package and the measurement data were analyzed by t test or one-way ANOVA.
Results: Compared with the control group, P.gingivalis downregulated NLRP3 mRNA and ASC mRNA while upregulated IL-1β mRNA. Moreover, the protein expression of NLRP3 and IL-1β was decreased. The gene and protein expression of NLRP3, ASC and IL-1β was induced by HP.gingivalis, while caspase-1mRNA and IL-1βsecretion was free from P.gingivalis or HP.gingivalis stimulus. All those genes as well as intracellular protein expression and IL-1βsecretion were significantly potentiated with ATP/P.gingivalis or ATP/HP.gingivalis stimuli in hGFs.
Conclusions: Exogenous ATP may be a potential stimulus signal in favour of NLRP3 inflammasome activation of hGFs and mediated inflammatory factor IL-1β secretion.
Download full-text PDF |
Source |
---|
Immunol Rev
January 2025
Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.
View Article and Find Full Text PDFJ Neurosci
January 2025
University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL 33136.
The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.
View Article and Find Full Text PDFClin Rev Allergy Immunol
December 2024
Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
Asthma is a chronic airway inflammatory disease that affects millions globally. Although glucocorticoids are a mainstay of asthma treatment, a subset of patients show resistance to these therapies, resulting in poor disease control and increased morbidity. The complex mechanisms underlying steroid-resistant asthma (SRA) involve Th1 and Th17 lymphocyte activity, neutrophil recruitment, and NLRP3 inflammasome activation.
View Article and Find Full Text PDFNeurochem Res
January 2025
Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!