The growing interest of the industry production in wearable robots for assistance and rehabilitation purposes opens the challenge for developing intuitive and natural control strategies. Myoelectric control, or myo-control, which consists in decoding the human motor intent from muscular activity and its mapping into control outputs, represents a natural way to establish an intimate human-machine connection. In this field, model based myo-control schemes (e.g., EMG-driven neuromusculoskeletal models, NMS) represent a valid solution for estimating the moments of the human joints. However, a model optimization is needed to adjust the model's parameters to a specific subject and most of the optimization approaches presented in literature consider complex NMS models that are unsuitable for being used in a control paradigm since they suffer from long-lasting setup and optimization phases. In this work we present a minimal NMS model for predicting the elbow and shoulder torques and we compare two optimization approaches: a linear optimization method (LO) and a non-linear method based on a genetic algorithm (GA). The LO optimizes only one parameter per muscle, whereas the GA-based approach performs a deep customization of the muscle model, adjusting 12 parameters per muscle. EMG and force data have been collected from 7 healthy subjects performing a set of exercises with an arm exoskeleton. Although both optimization methods substantially improved the performance of the raw model, the findings of the study suggest that the LO might be beneficial with respect to GA as the latter is much more computationally heavy and leads to minimal improvements with respect to the former. From the comparison between the two considered joints, it emerged also that the more accurate the NMS model is, the more effective a complex optimization procedure could be. Overall, the two optimized NMS models were able to predict the shoulder and elbow moments with a low error, thus demonstrating the potentiality for being used in an admittance-based myo-control scheme. Thanks to the low computational cost and to the short setup phase required for wearing and calibrating the system, obtained results are promising for being introduced in industrial or rehabilitation real time scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6243090 | PMC |
http://dx.doi.org/10.3389/fnbot.2018.00074 | DOI Listing |
Biomech Model Mechanobiol
June 2024
Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Gold Coast, and Advanced Design and Prototyping Technologies Institute, Gold Coast, QLD, 4222, Australia.
Cerebral palsy (CP) includes a group of neurological conditions caused by damage to the developing brain, resulting in maladaptive alterations of muscle coordination and movement. Estimates of joint moments and contact forces during locomotion are important to establish the trajectory of disease progression and plan appropriate surgical interventions in children with CP. Joint moments and contact forces can be estimated using electromyogram (EMG)-informed neuromusculoskeletal models, but a reduced number of EMG sensors would facilitate translation of these computational methods to clinics.
View Article and Find Full Text PDFSensors (Basel)
December 2023
School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China.
The accurate prediction of joint torque is required in various applications. Some traditional methods, such as the inverse dynamics model and the electromyography (EMG)-driven neuromusculoskeletal (NMS) model, depend on ground reaction force (GRF) measurements and involve complex optimization solution processes, respectively. Recently, machine learning methods have been popularly used to predict joint torque with surface electromyography (sEMG) signals and kinematic information as inputs.
View Article and Find Full Text PDFThis study implemented an electromyogram (EMG)-informed neuromusculoskeletal (NMS) model evaluating the volitional contributions to muscle forces and joint moments during functional electrical stimulation (FES). The NMS model was calibrated using motion and EMG (biceps brachii and triceps brachii) data recorded from able-bodied participants (n=3) performing weighted elbow flexion and extension cycling movements while equipped with an EMG-controlled closed-loop FES system. Models were executed using three computational approaches (i) EMG-driven, (ii) EMG-hybrid and (iii) EMG-assisted to estimate muscle forces and joint moments.
View Article and Find Full Text PDFPLoS One
November 2023
School of Allied Health Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
The purpose of this study was to determine the effect of donor muscle morphology following tendon harvest in anterior cruciate ligament (ACL) reconstruction on muscular support of the tibiofemoral joint during sidestep cutting. Magnetic resonance imaging (MRI) was used to measure peak cross-sectional area (CSA) and volume of the semitendinosus (ST) and gracilis (GR) muscles and tendons (bilaterally) in 18 individuals following ACL reconstruction. Participants performed sidestep cutting tasks in a biomechanics laboratory during which lower-limb electromyography, ground reaction loads, whole-body motions were recorded.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2023
Accurately predicting joint torque using wearable sensors is crucial for designing assist-as-needed exoskeleton controllers to assist muscle-generated torque and ensure successful task performance. In this paper, we estimated ankle dorsiflexion/plantarflexion, knee flexion/extension, hip flexion/extension, and hip abduction/adduction torques from electromyography (EMG) and kinematics during daily activities using neuromusculoskeletal (NMS) models and long short-term memory (LSTM) networks. The joint torque ground truth for model calibrating and training was obtained through inverse dynamics of captured motion data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!