The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In , MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341377PMC
http://dx.doi.org/10.1074/jbc.RA118.006099DOI Listing

Publication Analysis

Top Keywords

lipid flippase
8
murj
8
alternating-access mechanism
8
cell wall
8
membrane potential
8
conformational changes
8
bacterial lipid
4
flippase murj
4
murj functions
4
functions alternating-access
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!