The identification of a new series of growth inhibitors of Trypanosoma brucei rhodesiense, causative agent of Human African Trypanosomiasis (HAT), is described. A selection of compounds from our in-house compound collection was screened in vitro against the parasite leading to the identification of compounds with nanomolar inhibition of T. brucei growth. Preliminary SAR on the hit compound led to the identification of compound 34 that shows low nanomolar parasite growth inhibition (T. brucei EC 5 nM), is not cytotoxic (HeLa CC > 25,000 nM) and is selective over other parasites, such as Trypanosoma cruzi and Plasmodium falciparum (T. cruzi EC 8120 nM, P. falciparum EC 3624 nM).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2018.10.028 | DOI Listing |
ACS Med Chem Lett
January 2025
Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven 3000, Belgium.
Cruzipain (CZP) is an essential cysteine protease of , the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of , a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC = 28 nM) and null inhibition of human cathepsin L.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brasil.
This work investigates the anti-trypanosomal activities of ten thiohydantoin derivatives against the parasite Trypanosoma cruzi. Compounds with aliphatic chains (THD1, THD3, and THD5) exhibited the most promising IC against the epimastigote form of T. cruzi.
View Article and Find Full Text PDFEur J Med Chem
February 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Brazil. Electronic address:
Eur J Med Chem
February 2025
Biological and Molecular Chemistry Research Group, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, Alagoas, Maceió, 57072-970, Brazil. Electronic address:
Trypanosoma cruzi (T. cruzi) and Trypanosoma brucei (T. brucei) urgently demand innovative drug development due to their impact on public health worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!