Brainstem lesions and gait.

Handb Clin Neurol

Discipline of Medicine, University of Adelaide and Department of Neurology, Royal Adelaide Hospital, Adelaide, SA, Australia.

Published: March 2019

The brainstem contains virtually all of the important structures involved in experimental models of locomotion, encompassing control of upright posture, balance, and stepping. The physiologic basis for these functions is intricately related. Studies of the effects of lesions and disease on these functions in humans are limited to clinical observation and hampered by the anatomic complexity of closely spaced structures and lack of selectivity of lesions. Accordingly, any description of the clinical effects of brainstem lesions on gait and posture is imprecise because weakness and ataxia either predominate over or obscure any selective disturbance of the control of locomotion that may be correlated with the findings in experimental models. New and more sophisticated methods of brain imaging along with physiologic studies of balance and stepping may provide advances in human gait disorders, especially in relation to the brainstem control of locomotion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-444-63916-5.00023-9DOI Listing

Publication Analysis

Top Keywords

brainstem lesions
8
lesions gait
8
experimental models
8
balance stepping
8
control locomotion
8
brainstem
4
gait brainstem
4
brainstem virtually
4
virtually structures
4
structures involved
4

Similar Publications

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

Clinical Diagnosis and Differential Diagnosis Between CSF1R- and AARS2-Related Leukoencephalopathy.

J Mol Neurosci

January 2025

Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.

CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult.

View Article and Find Full Text PDF

Human neural stem cells (hNSCs) possess significant therapeutic potential for the treatment of traumatic brain injury (TBI), a leading cause of global death and disability. Recent pre-clinical studies have shown that hNSCs reduce tissue damage and promote functional recovery through neuroprotective and regenerative signaling and cell replacement. Yet the overall efficacy of hNSCs for TBI indications remains unclear.

View Article and Find Full Text PDF

A Novel Rat Model for Inflammatory Gut-Brain Interactions in Parkinson's Disease.

Eur J Neurosci

January 2025

Department of Anatomy, Brain Health Research Centre, University of Otago, Dunedin, New Zealand.

Gut inflammation is a salient prodromal feature of Parkinson's disease (PD) implicated in pathologic processes leading to nigrostriatal dopaminergic degeneration. However, existing rodent models of PD are suboptimal for investigating the interaction between gut inflammation and neuropathology. This study aimed to develop a rat model of PD in which gut inflammation exacerbated PD symptoms induced by a parkinsonian lesion.

View Article and Find Full Text PDF

New therapeutic agents developed for treating neurological disorders are often tested successfully on rodents. Testing in an appropriate large animal model where there is longer lifespan and comparable brain size to humans should improve translational success and is frequently expected by regulatory bodies. In this project, we aimed to establish a novel sheep model of Parkinson's disease as a large-brained experimental model for translational research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!