By analyzing multiple gene panels, next-generation sequencing is more effective than conventional procedures in identifying disease-related mutations that are useful for clinical decision-making. Here, we aimed to test the efficacy of an 84 genes customized-panel in BRCA1 and BRCA2 mutation-negative patients. Twenty-four patients were enrolled in this study. DNA libraries were prepared using a picodroplet PCR-based approach and sequenced with the MiSeq System. Highly putative pathogenic mutations were identified in genes other than the commonly tested BRCA1/2: 2 pathogenic mutations one in TP53 and one in MUTYH; 2 missense variants in MSH6 and ATM, respectively; 2 frameshift variants in KLLN, and ATAD2, respectively; an intronic variant in ANPEP, and 3 not functionally known variants (a frameshift variant in ATM a nonsense variant in ATM and a missense variant in NFE2L2). Our results show that this molecular screening will increase diagnostic sensitivity leading to a better risk assessment in breast cancer patients and their families. This strategy could also reveal genes that have a higher penetrance for breast and ovarian cancers by matching gene mutation with familial and clinical data, thereby increasing information about hereditary breast and ovarian cancer genetics and improving cancer prevention measures or therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2018.09.032DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
pathogenic mutations
8
variant atm
8
breast ovarian
8
multi-gene panel
4
panel brca1/brca2
4
brca1/brca2 identify
4
breast
4
identify breast
4
breast cancer-predisposing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!