Background/aims: The development of multidrug resistance (MDR), which results in disease recurrence and metastasis, is a crucial obstacle to successful chemotherapy for patients with gastric cancer (GC). Long non-coding RNAs (lncRNAs) have been found to play various roles in cancer. This study aimed to investigate the effect of XLOC_006753 on the development of MDR in GC cells.
Methods: The expression levels of XLOC_006753 in GC patients and MDR GC cell lines (SGC-7901/5-FU and SGC-7901/DDP cell line) were assessed by qRT-PCR. Statistical analyses were conducted to determine the relationship between XLOC_006753 expression and clinical features and to assess the prognostic value of XLOC_006753 for overall survival and progression-free survival. Then, a CCK-8 assay was used to detect cell proliferation ability and chemosensitivity. Flow cytometry was used to detect cell cycle and cell apoptosis. A wound-healing assay and transwell assay were used to detect cell migration. The expression of markers for MDR, G1/S transition, epithelial-mesenchymal transition (EMT) and PI3K/ AKT/mTOR signaling pathway were examined by western blot.
Results: XLOC_006753 was highly expressed in GC patients and MDR GC cell lines (SGC-7901/5-FU and SGC-7901/DDP cell lines), and its high expression was positively associated with metastasis, TNM stage, tumor size, and poor survival in GC patients. Moreover, XLOC_006753 was an independent prognostic biomarker of overall survival and progression-free survival for gastric cancer patients. Knocking down XLOC_006753 in the two MDR GC cell lines significantly inhibited cell proliferation, cell viability, cell cycle G1/S transition, and migration. XLOC_006753 knockdown also promoted apoptosis. Furthermore, western blots showed that XLOC_006753 knockdown decreased some markers of MDR, G1/S transition, and EMT expression, while increasing caspase9 expression and inhibiting the PI3K/AKT/mTOR signaling pathway in SGC-7901/5-FU and SGC-7901/DDP cells.
Conclusion: High expression of XLOC_006753 promoted the development of MDR, which was activated by the PI3K/AKT/mTOR pathway in GC cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000495499 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!