Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The Deyo/Charlson co-morbidity index (CCI) and Klabunde co-morbidity index (KCI) co-morbidity indexes represent outdated indexes when the endpoint of complications after radical prostatectomy (RP) is considered. A novel group of co-morbidities derived from International Classification of Diseases-9 diagnostic codes in a contemporary RP database could provide better accuracy. Research Design, Subjects and Measures: We relied on 20,484 patients with clinically localized non-metastatic prostate cancer treated with RP between 2000 and 2009 in the Surveillance, Epidemiology, and End Results-Medicare linked database. We examined 2 endpoints, namely, 90-day medical complication rate and 90-day surgical complication rate after RP. Simulated annealing (SA) was used to develop a novel co-morbidity index. Finally, the newly identified groups of co-morbid conditions were compared with the CCI and Klabunde indexes.
Results: Our SA identified 10 and 7 individual co-morbid conditions able to predict 90-day medical and surgical complications respectively. This novel model showed improved predictive accuracy over CCI and KCI for the 2 endpoints considered (respectively: 59.4 vs. 58.1 and 58.0% for medical complications, 58.0 vs. 56.8 and 56.7% for surgical complications).
Conclusions: The newly defined groupings of co-morbid conditions resulted in better ability to predict the 2 endpoints of interest compared to CCI and KCI. However, the gain was marginal. This implies that better tools should be defined to more accurately predict these outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000495071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!