A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Central action of rapamycin on early ischemic injury and related cardiac depression following experimental subarachnoid hemorrhage. | LitMetric

Central action of rapamycin on early ischemic injury and related cardiac depression following experimental subarachnoid hemorrhage.

Brain Res Bull

Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.

Published: January 2019

Early brain injury and related cardiac consequences play a key role in the devastating outcomes after subarachnoid hemorrhage (SAH). We reported that rapamycin exerts neuroprotection against cortical hypoxia early after SAH, but its mechanism is poorly understood. This in vivo study aimed to determine the potential role of the transcription factor STAT3 in the rapamycin-mediated neuroprotection in a mouse model of SAH. Forty C57BL/6 N mice were treated with an intracerebroventricular injection of rapamycin or vehicle (control) given after SAH induction by a filament perforation method, with or without STAT3 (Stattic) or ERK (PD98059) inhibitor pretreatment. Cerebral blood flow signals (%vascularity), brain tissue oxygen saturation (SbtO), and cardiac output (CO) were analyzed using an ultrasound/photoacoustic imaging system. Clinically relevant neurocardiac depression was notable in severe SAH mice. Rapamycin improved %vascularity, SbtO, and CO on day 1 after SAH onset. The beneficial effects of rapamycin on cerebral blood flow and oxygenation persisted until day 3, resulting in a significant reduction in post-SAH new cerebral infarctions and survival, as well as improved neurological functions, compared to the control group. All of the effects were attenuated by pretreatment with Stattic or PD98059. These data suggest that ERK and JAK/STAT3 pathways play an important role in the neurocardiac protection by rapamycin after SAH. We propose that rapamycin is a novel pharmacological strategy to target STAT3 activation, with a possible crosstalk through the ERK pathway, for the treatment of post-SAH early brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2018.11.015DOI Listing

Publication Analysis

Top Keywords

injury cardiac
8
subarachnoid hemorrhage
8
early brain
8
brain injury
8
cerebral blood
8
blood flow
8
rapamycin
7
sah
7
central action
4
action rapamycin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!