PA1 (dIm-PyPyβPyPyPy-γ-PyPyβPyPyPyPyβ-Ta) is a large (14-ring) hairpin polyamide that was designed to recognize the DNA sequence 5'-WGW-3', where W is either A or T. As is common among the smaller 6-8-ring hairpin polyamides (PAs), it binds its target recognition sequence with low nM affinity. However, in addition to its large size, it is distinct from these more extensively characterized PAs in its high tolerance for mismatches and antiviral properties. In ongoing attempts to understand the basis for these distinctions, we conducted thermodynamics studies of PA1-DNA interactions. The temperature dependence of binding affinity was measured using TAMRA-labeled hairpin DNAs containing a single target sequence. PA1 binding to either an ATAT/TATA or an AAAA/TTTT pattern is consistently entropically driven. This is in contrast to the A/T pattern-dependent driving forces for DNA binding by netropsin, distamycin, and smaller hairpin polyamides. Analysis of the salt dependence of PA1-DNA binding reveals that within experimental error, there is no dependence on ionic strength, indicating that the polyelectrolyte effect does not contribute to PA1-DNA binding energetics. This is similar to that observed for smaller PAs. PA1-DNA recognition sequence binding stoichiometries were determined at both nM (fluorescence) and μM (circular dichroism) concentrations. With all sequences and under both conditions, multiple PA1 molecules bind the small DNA hairpin that contains only a single recognition sequence. Implications for these observations are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2018.11.013DOI Listing

Publication Analysis

Top Keywords

recognition sequence
12
dna binding
8
hairpin polyamide
8
hairpin polyamides
8
pa1-dna binding
8
binding
7
hairpin
6
sequence
5
thermodynamics site
4
site stoichiometry
4

Similar Publications

Automatic speech recognition predicts contemporaneous earthquake fault displacement.

Nat Commun

January 2025

Los Alamos National Laboratory, EES-17 National Security Earth Science, Los Alamos, NM, 87545, USA.

Significant progress has been made in probing the state of an earthquake fault by applying machine learning to continuous seismic waveforms. The breakthroughs were originally obtained from laboratory shear experiments and numerical simulations of fault shear, then successfully extended to slow-slipping faults. Here we apply the Wav2Vec-2.

View Article and Find Full Text PDF

Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems.

View Article and Find Full Text PDF

India harbours a substantial population of 9.43 million dogs, showcasing diverse phenotypes and utility. Initiatives focusing on awareness, conservation and informed breeding can greatly enhance the recognition and welfare of the unique Indian canine heritage.

View Article and Find Full Text PDF

Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.

View Article and Find Full Text PDF

elements are primate-specific retrotransposon sequences that comprise ∼11% of human genomic DNA. sequences contain an internal RNA polymerase III promoter and the resultant RNA transcripts mobilize by a replicative process termed retrotransposition. retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!