A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generalized Gradient Approximation Exchange Energy Functional with Near-Best Semilocal Performance. | LitMetric

Generalized Gradient Approximation Exchange Energy Functional with Near-Best Semilocal Performance.

J Chem Theory Comput

Quantum Theory Project, Department of Physics and Deptartment of Chemistry , University of Florida, P.O. Box 118435, Gainesville , Florida 32611-8435 , United States.

Published: January 2019

We develop and validate a nonempirical generalized gradient approximation (GGA) exchange (X) density functional that performs as well as the SCAN (strongly constrained and appropriately normed) meta-GGA on standard thermochemistry tests. Additionally, the new functional (NCAP, nearly correct asymptotic potential) yields Kohn-Sham eigenvalues that are useful approximations of the density functional theory (DFT) ionization potential theorem values by inclusion of a systematic derivative discontinuity shift of the X potential. NCAP also enables time-dependent DFT (TD-DFT) calculations of good-quality polarizabilities, hyper-polarizabilities, and one-Fermion excited states without modification (calculated or ad hoc) of the long-range behavior of the exchange potential or other patches. NCAP is constructed by reconsidering the imposition of the asymptotic correctness of the X potential (-1/ r) as a constraint. Inclusion of derivative discontinuity and approximate integer self-interaction correction treatments along with first-principles determination of the effective second-order gradient expansion coefficient yields a major advance over our earlier correct asymptotic potential functional [CAP; J. Chem. Phys. 2015 , 142 , 054105 ]. The new functional reduces a spurious bump in the CAP atomic exchange potential and moves it to distances irrelevantly far from the nucleus (outside the tail of essentially all practical basis functions). It therefore has nearly correct atomic exchange-potential behavior out to rather large finite distances r from the nucleus but eventually goes as - c/ r with an estimated value for the constant c of around 0.3, so as to achieve other important properties of exact DFT exchange within the restrictions of the GGA form. We illustrate the results with the Ne atom optimized effective potentials and with standard molecular benchmark test data sets for thermochemical, structural, and response properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.8b00998DOI Listing

Publication Analysis

Top Keywords

generalized gradient
8
gradient approximation
8
density functional
8
correct asymptotic
8
asymptotic potential
8
derivative discontinuity
8
exchange potential
8
potential
7
functional
6
exchange
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!