Mathematical modeling of soft robots is complicated by the description of the continuously deformable three-dimensional shape that they assume when subjected to external loads. In this article we present the deformation space formulation for soft robots dynamics, developed using a finite element approach. Starting from the Cosserat rod theory formulated on a Lie group, we derive a discrete model using a helicoidal shape function for the spatial discretization and a geometric scheme for the time integration of the robot shape configuration. The main motivation behind this work is the derivation of accurate and computational efficient models for soft robots. The model takes into account bending, torsion, shear, and axial deformations due to general external loading conditions. It is validated through analytic and experimental benchmark. The results demonstrate that the model matches experimental positions with errors <1% of the robot length. The computer implementation of the model results in SimSOFT, a dynamic simulation environment for design, analysis, and control of soft robots.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2018.0047DOI Listing

Publication Analysis

Top Keywords

soft robots
12
finite element
8
deformation space
8
space formulation
8
geometrically exact
4
model
4
exact model
4
soft
4
model soft
4
soft continuum
4

Similar Publications

Flexible tactile sensors have received significant attention for use in wearable applications such as robotics, human-machine interfaces, and health monitoring. However, conventional tactile sensors face challenges in accurately measuring pressure because vertical deformation is induced by Poisson's ratio in situations where lateral strain is applied. This study shows a strain-insensitive flexible tactile sensor array without the crosstalk effect using a highly stretchable mesh.

View Article and Find Full Text PDF

Tri-Prism Origami Enabled Soft Modular Actuator for Reconfigurable Robots.

Soft Robot

January 2025

Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.

Soft actuators hold great potential for applications in surgical operations, robotic manipulation, and prosthetic devices. However, they are limited by their structures, materials, and actuation methods, resulting in disadvantages in output force and dynamic response. This article introduces a soft pneumatic actuator capable of bending based on triangular prism origami.

View Article and Find Full Text PDF

Biocomposites of 2D layered materials.

Nanoscale Horiz

January 2025

Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.

View Article and Find Full Text PDF

Magnetic Bistable Dome Actuators for Soft Robotics with High Volume Capacity and Motion Stability.

ACS Appl Mater Interfaces

January 2025

Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, P.R. China.

Magneto-responsive soft actuators hold significant promise in soft robotics due to their rapid responsiveness and untethered operation. However, controlling their deformations presents challenges because of their inherent flexibility and high degrees of freedom. Here, we present a magnetically driven bistable dome-shaped soft actuator that simplifies deformation by limiting it to two distinct states.

View Article and Find Full Text PDF

Combined robotic/open pancreaticoduodenectomy in the young aged < 50 years.

Updates Surg

January 2025

Division of General Surgery, Department of Surgery and Therapeutic and Research Center of Pancreatic Cancer, Taipei Veterans General Hospital, 10 Floor 201 Section 2 Shipai Road, Taipei, 112, Taiwan, ROC.

Impact of age on surgical and survival outcomes after combined robotic/open pancreaticoduodenectomy (CR/OPD) has not been extensively studied. This study aimed to evaluate the surgical and survival outcomes of patients aged < 50 years who underwent CR/OPD. A comparative study was conducted on patients who underwent CR/OPD divided into two groups: the young (age < 50 years) and the old (age ≥ 50 years).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!