Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using bioinformatics analysis, the homologues of the genes Sr33 and Sr35 were identifed in the genomes of Triticum aestivum, Hordeum vulgare and Triticum urartu. It is known that these genes provide resistance to hightly virulent wheat stem rust races (Ug99). To identify important for resistance amino acid sites, the comparison of the founded homologues with the Sr33 and Sr35 protein sequences was performed. It was found that the sequences S5DMA6 and E9P785 are the closest homologues of RGA1e protein – a product of the Sr33 gene, and the sequences M7YFA9 (CNL-C) and F2E9R2 are the homologues of CNL9 – a product of the gene Sr35. It is assumed that the homologues of the genes Sr33 and Sr35, which derived from the wild relatives of wheat and barley, can provide resistance to various forms of a stem rust and can be used in the future breeding programs for wheat improvement.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!