Secretome of primary cultures is an accessible source of biological markers compared to more complex and less decipherable mixtures such as serum or plasma. The protonation state (PS) of secretome reflects the metabolism of cells and can be used for cancer early detection. Here, we demonstrate a superhydrophobic organic electrochemical device that measures PS in a drop of secretome derived from liquid biopsies. Using data from the sensor and principal component analysis (PCA), we developed algorithms able to efficiently discriminate tumour patients from non-tumour patients. We then validated the results using mass spectrometry and biochemical analysis of samples. For the 36 patients across three independent cohorts, the method identified tumour patients with high sensitivity and identification as high as 100% (no false positives) with declared subjects at-risk, for sporadic cancer onset, by intermediate values of PS. This assay could impact on cancer risk management, individual's diagnosis and/or help clarify risk in healthy populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242957 | PMC |
http://dx.doi.org/10.1038/s41698-018-0069-7 | DOI Listing |
Curr Med Chem
January 2025
Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, 21941906, Brazil.
This study discusses the chemical perspectives of the [18F]F-PSMA probe, a pivotal tool in prostate cancer imaging. [18F]Fluorine, a positron emitter with a half-life of 109.8 minutes, is produced in a cyclotron by bombarding [18O]-enriched targets with protons.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Developing Brain Institute, Children's National Hospital, Washington, D.C., USA.
The biochemical composition and structure of the brain are in a rapid change during the exuberant stage of fetal and neonatal development. H-MRS is a noninvasive tool that can evaluate brain metabolites in healthy fetuses and infants as well as those with neurological diseases. This review aims to provide readers with an understanding of 1) the basic principles and technical considerations relevant to H-MRS in the fetal-neonatal brain and 2) the role of H-MRS in early fetal-neonatal development brain research.
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.
While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction, i.e., the metal-assisted, Bro̷nsted base-catalyzed abstraction of the α-proton from a carboxylate substrate to form an enol(ate) intermediate.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.
Purpose: To develop and evaluate a physics-driven, saturation contrast-aware, deep-learning-based framework for motion artifact correction in CEST MRI.
Methods: A neural network was designed to correct motion artifacts directly from a Z-spectrum frequency (Ω) domain rather than an image spatial domain. Motion artifacts were simulated by modeling 3D rigid-body motion and readout-related motion during k-space sampling.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!