Background: Biocrusts, communities dominated by mosses, lichens, cyanobacteria, and other microorganisms, largely affect the carbon cycle of drylands. As poikilohydric organisms, their activity time is often limited to short hydration events. The photosynthetic and respiratory response of biocrusts to hydration events is not only determined by the overall amount of available water, but also by the frequency and size of individual rainfall pulses.
Methods: We experimentally assessed the carbon exchange of a biocrust community dominated by the lichen in central Spain. We compared the effect of two simulated precipitation patterns providing the same overall amount of water, but with different pulse sizes and frequency (high frequency: five mm/day vs. low frequency: 15 mm/3 days), on net/gross photosynthesis and dark respiration.
Results: Radiation and soil temperature, together with the watering treatment, affected the rates of net and gross photosynthesis, as well as dark respiration. On average, the low frequency treatment showed a 46% ± 3% (mean ± 1 SE) lower rate of net photosynthesis, a 13% ± 7% lower rate of dark respiration, and a 24% ± 8% lower rate of gross photosynthesis. However, on the days when samples of both treatments were watered, no differences between their carbon fluxes were observed. The carbon flux response of was modulated by the environmental conditions and was particularly dependent on the antecedent soil moisture.
Discussion: In line with other studies, we found a synergetic effect of individual pulse size, frequency, environmental conditions, and antecedent moisture on the carbon exchange fluxes of biocrusts. However, most studies on this subject were conducted in summer and they obtained results different from ours, so we conclude that there is a need for long-term experiments of manipulated precipitation impacts on the carbon exchange of biocrusts. This will enable a more complete assessment of the impacts of climate change-induced alterations in precipitation patterns on biocrust communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6241396 | PMC |
http://dx.doi.org/10.7717/peerj.5904 | DOI Listing |
Sci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFNat Commun
January 2025
WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
Reducing green hydrogen production cost is critical for its widespread application. Proton-exchange-membrane water electrolyzers are among the most promising technologies, and significant research has been focused on developing more active, durable, and cost-effective catalysts to replace expensive iridium in the anode. Ruthenium oxide is a leading alternative while its stability is inadequate.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Density functional approximations can reduce the spin symmetry breaking observed for self-consistent field (SCF) solutions compared to Hartree-Fock theory, but the amount of exact Hartree-Fock (HF) exchange appears to be a key determinant in broken symmetry. To elucidate the precise role of exact exchange, we investigate the energy landscape of unrestricted Hartree-Fock and Kohn-Sham density functional theory for benzene and square cyclobutadiene, which provide paradigmatic examples of closed-shell and open-shell electronic structures, respectively. We find that increasing the amount of exact exchange leads to more local SCF minima, which can be characterized as combinatorial arrangements of unpaired electrons in the carbon π system.
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China. Electronic address:
Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
Seawater intrusion and human activities have significantly impacted coastal groundwater quality in many regions worldwide. This study systematically assessed groundwater chemistry, its suitability for drinking and irrigation (sample size, n = 3034), and exposure risks (n = 2863) across three key sub-regions of the Bohai Sea area: Bohai Bay, Liaodong Bay, and Laizhou Bay. Significant seasonal variations observed in groundwater chemistry at different depths in Bohai Bay region, with severe contamination from salinity-alkalinity and nitrogen-fluoride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!