Closely related species with overlapping geographic ranges encounter a significant challenge: they share many ecological traits and preferences but must partition resources to coexist. In Ontario, potentially eleven species of carrion beetles (Coleoptera: Silphidae) live together and require vertebrate carrion for reproduction. Their reliance on an ephemeral and uncommon resource that is unpredictable in space and time is thought to create intense intra- and interspecific competition. Evidence suggests that burying beetle species reduce competition by partitioning carrion for breeding across different habitats, temperatures, and seasons. Here, we test predictions of an alternative axis for partitioning carrion: vertical partitioning between the ground and forest canopy. We conducted a survey of carrion beetles from May to July 2016 at the Queen's University Biological Station across 50 randomly generated points using baited lethal traps at zero and six metres. Ground traps yielded more species and individuals compared to those in the canopy, and the number of individuals and species caught increased through the season in both trap types. Ground and canopy traps were accurately distinguished by the presence or absence of three species: ground traps contained more and , while canopy traps contained more . We trapped 253 in the canopy, but only 60 on the ground. is thought to be rare across its geographic range, but our results suggest it is uniquely common in canopy habitats, demonstrating a vertical partitioning of habitat and resources. Our results are consistent with having diverged into canopy habitats as a strategy to coexist with closely related sympatric species when competing for similar resources. We still, however, do not know the traits that allow to flourish in the canopy, exactly how uses canopy resources for breeding, or the factors that restrict the expansion of other burying beetles into this habitat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240436PMC
http://dx.doi.org/10.7717/peerj.5829DOI Listing

Publication Analysis

Top Keywords

canopy
10
burying beetles
8
forest canopy
8
carrion beetles
8
partitioning carrion
8
vertical partitioning
8
ground traps
8
canopy traps
8
traps contained
8
canopy habitats
8

Similar Publications

Legume content (LC) in grass-legume mixtures is important for assessing forage quality and optimizing fertilizer application in meadow fields. This study focuses on differences in LC measurements obtained from unmanned aerial vehicle (UAV) images and ground surveys based on dry matter assessments in seven meadow fields in Hokkaido, Japan. We propose a UAV-based LC (LC) estimation and mapping method using a land cover map from a simple linear iterative clustering (SLIC) algorithm and a random forest (RF) classifier.

View Article and Find Full Text PDF

Light quality regulates growth and flavonoid content in a widespread forest understorey medicinal species Georgi.

Front Plant Sci

December 2024

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.

Introduction: Introduction: Light is not only essential for plant photosynthesis and growth, but also acts as a signal to regulate its secondary metabolism. Despite the influence of light quality on the yield and flavonoid compounds in commercial crops is well-documented, its role in regulating wild understorey species, particularly medicine plants whose flavonoid biosynthesis driven by multiple spectral regions of canopy sunlight, is less understood.

Methods: To address it, we conducted a light-quality manipulation experiment on Georgi, a widespread understorey medicinal species, with light-emitting diodes (LED).

View Article and Find Full Text PDF

Analysis of canopy light utilization efficiency in high-yielding rapeseed varieties.

Sci Rep

December 2024

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.

The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages.

View Article and Find Full Text PDF

This study delves into the multi-scale temporal and spatial variations of soil heat flux (G) within riparian zones and its correlation with net radiation (Rn) across six riparian woodlands in Shanghai, each characterized by distinct vegetation types. The objective is to assess the complex interrelations between G and Rn, and how these relationships are influenced by varying vegetation and seasons. Over the course of a year, data on G and Rn is collected to investigate their dynamics.

View Article and Find Full Text PDF

Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!