A key challenge of magnetometry lies in the simultaneous optimization of magnetic field sensitivity and maximum field range. In interferometry-based magnetometry, a quantum two-level system acquires a dynamic phase in response to an applied magnetic field. However, due to the 2π periodicity of the phase, increasing the coherent interrogation time to improve sensitivity reduces field range. Here we introduce a route towards both large magnetic field range and high sensitivity via measurements of the geometric phase acquired by a quantum two-level system. We experimentally demonstrate geometric-phase magnetometry using the electronic spin associated with the nitrogen vacancy (NV) color center in diamond. Our approach enables unwrapping of the 2π phase ambiguity, enhancing field range by 400 times. We also find additional sensitivity improvement in the nonadiabatic regime, and study how geometric-phase decoherence depends on adiabaticity. Our results show that the geometric phase can be a versatile tool for quantum sensing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258709PMC
http://dx.doi.org/10.1038/s41467-018-07489-zDOI Listing

Publication Analysis

Top Keywords

field range
16
geometric phase
12
magnetic field
12
quantum two-level
8
two-level system
8
field
6
phase
5
magnetometry
4
phase magnetometry
4
magnetometry solid-state
4

Similar Publications

Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS where the SWCNT layer completely covers the MoS layer.

View Article and Find Full Text PDF

ESMO Global Consortium Study on the availability, out-of-pocket costs, and accessibility of cancer medicines: 2023 update.

Ann Oncol

January 2025

Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Background: The availability and affordability of safe, effective cancer therapies are core requirements for effective cancer control. Global disparities exist in access, however, yielding unequal cancer outcomes. The goal of this study was to provide updated data regarding the formulary availability, out-of-pocket costs, and accessibility of cancer medicines in countries across the full spectrum of economic development areas.

View Article and Find Full Text PDF

Rapid indirect detection of N-lactoyl-phenylalanine using dual DNA biosensors based on solution-gated graphene field-effect transistor.

Biosens Bioelectron

January 2025

School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China. Electronic address:

As obesity rates continue to rise, there is an increasing focus on reducing obesity through exercise. People are becoming more aware of the importance of weight loss through physical activity. However, the effectiveness of exercise can vary significantly among individuals, making it challenging to evaluate its impact.

View Article and Find Full Text PDF

Purpose: Total marrow (lymph-node) irradiation (TMI/TMLI) is a radiotherapy technique irradiating the whole body of a patient. The limited couch travel range in modern linacs (130-150 cm) forces to split the TMI/TMLI delivery into two plans with opposite orientation. A dedicated field junction is necessary to achieve satisfactory target coverage in the overlapping region of the two plans.

View Article and Find Full Text PDF

Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!