Demonstrations of passive daytime radiative cooling have primarily relied on complex and costly spectrally selective nanophotonic structures with high emissivity in the transparent atmospheric spectral window and high reflectivity in the solar spectrum. Here, we show a directional approach to passive radiative cooling that exploits the angular confinement of solar irradiation in the sky to achieve sub-ambient cooling during the day regardless of the emitter properties in the solar spectrum. We experimentally demonstrate this approach using a setup comprising a polished aluminum disk that reflects direct solar irradiation and a white infrared-transparent polyethylene convection cover that minimizes diffuse solar irradiation. Measurements performed around solar noon show a minimum temperature of 6 °C below ambient temperature and maximum cooling power of 45 W m. Our passive cooling approach, realized using commonly available low-cost materials, could improve the performance of existing cooling systems and enable next-generation thermal management and refrigeration solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258698PMC
http://dx.doi.org/10.1038/s41467-018-07293-9DOI Listing

Publication Analysis

Top Keywords

radiative cooling
12
solar irradiation
12
daytime radiative
8
solar spectrum
8
cooling
7
solar
6
passive
4
passive directional
4
directional sub-ambient
4
sub-ambient daytime
4

Similar Publications

Radiative cooling is an excellent strategy for mitigating global warming, by enhancing heat fluxes away from the Earth, thus balancing the Earth's heat flow. However, for randomly particle-dispersed radiative cooling materials, the particle content as high as 94-96 wt % or 60 vol %, far exceeds the critical pigment percentage (40-50%) of traditional coatings, preventing its large-scale application. Here, inspired by particle deposition under gravity in solution, we demonstrate an auto-deposited SiO composite radiative cooling coating (ADRC) which reduces the amounts of particles required and lowers costs.

View Article and Find Full Text PDF

Low-vibration cryogenic test facility for next generation of ground-based gravitational-wave observatories.

Rev Sci Instrum

January 2025

OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.

We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.

View Article and Find Full Text PDF

Scalable, Flexible, and UV-Resistant Bacterial Cellulose Composite Film for Daytime Radiative Cooling.

ACS Appl Mater Interfaces

January 2025

School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Energy Devices & Interface Science, Nanjing University of Information Science & Technology, Ning-Liu Road 219, Nanjing 210026, China.

Radiative cooling, a passive cooling technology, functions by reflecting the majority of solar radiation (within the solar spectrum of 0.3-2.5 μm) and emitting thermal radiation (within the atmospheric windows of 8-13 μm and 16-20 μm).

View Article and Find Full Text PDF

Achieving a Porous PDMS Film for Passive Cooling through the Utilization of Ultrafine NaCl Sacrificial Templates.

ACS Omega

January 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

Passive radiative cooling technology serves as an energy-free alternative to traditional cooling systems. Porous polymer structures are frequently employed for radiative cooling by leveraging the refractive index mismatch between the polymer and the pores, enabling the scattering of incoming sunlight. Recently, water-soluble and readily available Sodium chloride (NaCl) particles have been utilized as sacrificial templates for sustainable pore creation.

View Article and Find Full Text PDF

Core-shell structured BN/SiO nanofiber membrane featuring with dual-effect thermal management and flame retardancy for extreme space thermal protection.

Sci Bull (Beijing)

January 2025

Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.

With the rapid progress of aerospace frontier engineering, the extreme space thermal environment has brought severe challenges to astronauts' space suits, putting forward higher requirements for thermal protection materials. On this basis, a unique core-shell structured hexagonal boron nitride (h-BN)/silicon dioxide (SiO) nanofiber membrane (HS) was prepared using the coaxial electrospinning method, of which both the thermal insulation SiO nanofiber cortex and the passive radiation cooling (PRC) h-BN nanofiber core make it a promising dual-effect thermal management material. Especially, when the amount of h-BN is 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!