In eukaryotes, genomic DNA is packaged into the nucleus together with histone proteins, forming chromatin. The fundamental repeating unit of chromatin is the nucleosome, a naturally symmetric structure that wraps DNA and is the substrate for numerous regulatory post-translational modifications. However, the biological significance of nucleosomal symmetry until recently had been unexplored. To investigate this issue, we developed an obligate pair of histone H3 heterodimers, a novel genetic tool that allowed us to modulate modification sites on individual H3 molecules within nucleosomes in vivo. We used these constructs for molecular genetic studies, for example demonstrating that H3K36 methylation on a single H3 molecule per nucleosome in vivo is sufficient to restrain cryptic transcription. We also used asymmetric nucleosomes for mass spectrometric analysis of dependency relationships among histone modifications. Furthermore, we extended this system to the centromeric H3 isoform (Cse4/CENP-A), gaining insights into centromeric nucleosomal symmetry and structure. In this review, we summarize our findings and discuss the utility of this novel approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421086 | PMC |
http://dx.doi.org/10.1007/s00294-018-0910-0 | DOI Listing |
Pancreatology
January 2025
Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary. Electronic address:
Background/objectives: Loss-of-function chymotrypsin C (CTRC) variants increase the risk for chronic pancreatitis (CP) by reducing protective pancreatic CTRC activity. Variants in the 5' upstream region that includes the promoter might affect CTRC expression but have not been investigated to date. The aim of the present study was to address this knowledge gap.
View Article and Find Full Text PDFArab J Gastroenterol
January 2025
Department of Pediatric Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.
Background And Study Aims: Hirschsprung disease (HD) is a complex developmental disease that resulted from impaired proliferation and migration of neural crest cells. Despite the genetic causation of enteric nervous system have been found to be responsible for part of HD cases, the genetic aetiology of most HD patients still needs to be explored.
Patients And Methods: Whole-genome sequencing and subsequent Sanger sequencing validation analysis were performed in 13 HD children and their unaffected parents.
Zhonghua Xue Ye Xue Za Zhi
December 2024
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
This study aimed to primarily discuss the pathogenesis of hereditary coagulation factor Ⅴ (FⅤ) deficiency in a family with a consanguineous cousin marriage. The coagulation indices of the pedigree (three generations with seven individuals) and the thrombin levels of the proband and his father were assessed. All exons of the F5 gene were analyzed with Sanger sequencing, and a new mutation was confirmed with reverse sequencing.
View Article and Find Full Text PDFTop Antivir Med
December 2024
University of Minnesota, Minneapolis, USA.
People with HIV (PWH) are living longer and experiencing a greater burden of morbidity from non-AIDS-defining conditions. Chronically treated HIV disease is associated with ongoing systemic inflammation that contributes to the development of chronic conditions (eg, cardiovascular disease) and geriatric syndromes (eg, frailty). Apart from HIV disease, a progressive increase in systemic inflammation is a characteristic feature of biologic aging, a process described as "inflammaging.
View Article and Find Full Text PDFEur J Paediatr Neurol
December 2024
Department of Pediatrics, Peking University People's Hospital, Beijing, China; Epilepsy Center, Peking University People's Hospital, Beijing, China. Electronic address:
Aim: Exploring the association between SETD1B variants and absence seizures (ASs).
Methods: We engaged a small cohort of four pediatric epilepsy patients with identified SETD1B variants and conducted a comprehensive review of 50 documented instances. Clinical profiles were meticulously compiled, and genetic screening was executed via trio-based whole-exome sequencing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!