Wildfires inject large amounts of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and cause strong radiative forcing. During a 14-month period of observations on board a passenger aircraft flying between Europe and North America, we found frequent and widespread biomass burning (BB) plumes, influencing 16 of 160 flight hours in the LMS. The average BC mass concentrations in these plumes (∼140 ng·m, standard temperature and pressure) were over 20 times higher than the background concentration (∼6 ng·m) with more than 100-fold enhanced peak values (up to ∼720 ng·m). In the LMS, nearly all BC particles were covered with a thick coating. The average mass equivalent diameter of the BC particle cores was ∼120 nm with a mean coating thickness of ∼150 nm in the BB plume and ∼90 nm with a coating of ∼125 nm in the background. In a BB plume that was encountered twice, we also found a high diameter growth rate of ∼1 nm·h due to the BC particle coatings. The observed high concentrations and thick coatings of BC particles demonstrate that wildfires can induce strong local heating in the LMS and may have a significant influence on the regional radiative forcing of climate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294891 | PMC |
http://dx.doi.org/10.1073/pnas.1806868115 | DOI Listing |
Langmuir
January 2025
CHRIST University, Bangalore, Karnataka 560029, India.
Given the inherent challenges of the CO electroreduction (COER) reaction, solely from CO and HO, it is desirable to develop selective product formation pathways. This can be achieved by designing multimetallic nanocomposites that provide optimal CO coverage, allowing for tunability in the product formation. In this work, Ag and Zn codoped-SrTiO (ZAST) composite immobilized carbon black (CB)-modified GCE working electrode (ZAST@CB/GCE) was developed for the electrochemical conversion of CO to multicarbon products.
View Article and Find Full Text PDFRespir Res
January 2025
Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
Background: Air pollution is associated with poor asthma outcomes in children. However, most studies focus on ambient or indoor monitor pollution levels. Few studies evaluate breathing zone exposures, which may be more consequential for asthma outcomes.
View Article and Find Full Text PDFLangmuir
January 2025
Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, GR-65404 Kavala, Greece.
The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.
Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!