AI Article Synopsis

  • The posterior parietal cortex (PPC) in rats exhibits different functional characteristics compared to primates, primarily representing ipsilateral forelimb movements while the primary (M1) and secondary motor cortices (M2) prefer contralateral movements.
  • Optogenetic manipulation demonstrated that inhibiting PPC or M1 shifted the limb movement preference differently, implying distinct roles in motor control between these brain regions.
  • These findings indicate that while M1 and M2 are involved in voluntary movement with a contralateral bias, the PPC’s function in limb control may have evolved differently across species, warranting further investigation into its role.

Article Abstract

It is well known that the posterior parietal cortex (PPC) and frontal motor cortices in primates preferentially control voluntary movements of contralateral limbs. The PPC of rats has been defined based on patterns of thalamic and cortical connectivity. The anatomical characteristics of this area suggest that it may be homologous to the PPC of primates. However, its functional roles in voluntary forelimb movements have not been well understood, particularly in the lateralization of motor limb representation; that is, the limb-specific activity representations for right and left forelimb movements. We examined functional spike activity of the PPC and two motor cortices, the primary motor cortex (M1) and the secondary motor cortex (M2), when head-fixed male rats performed right or left unilateral movements. Unlike primates, PPC neurons in rodents were found to preferentially represent ipsilateral forelimb movements, in contrast to the contralateral preference of M1 and M2 neurons. Consistent with these observations, optogenetic activation of PPC and motor cortices, respectively, evoked ipsilaterally and contralaterally biased forelimb movements. Finally, we examined the effects of optogenetic manipulation on task performance. PPC or M1 inhibition by optogenetic GABA release shifted the behavioral limb preference contralaterally or ipsilaterally, respectively. In addition, weak optogenetic PPC activation, which was insufficient to evoke motor responses by itself, shifted the preference ipsilaterally; although similar M1 activation showed no effects on task performance. These paradoxical observations suggest that the PPC plays evolutionarily different roles in forelimb control between primates and rodents. In rodents, the primary and secondary motor cortices (M1 and M2, respectively) are involved in voluntary movements with contralateral preference. However, it remains unclear whether and how the posterior parietal cortex (PPC) participates in controlling multiple limb movements. We recorded functional activity from these areas using a behavioral task to monitor movements of the right and left forelimbs separately. PPC neurons preferentially represented ipsilateral forelimb movements and optogenetic PPC activation evoked ipsilaterally biased forelimb movements. Optogenetic PPC inhibition via GABA release shifted the behavioral limb preference contralaterally during task performance, whereas weak optogenetic PPC activation, which was insufficient to evoke motor responses by itself, shifted the preference ipsilaterally. Our findings suggest rodent PPC contributes to ipsilaterally biased motor response and/or planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335753PMC
http://dx.doi.org/10.1523/JNEUROSCI.1584-18.2018DOI Listing

Publication Analysis

Top Keywords

forelimb movements
24
motor cortices
16
optogenetic ppc
16
ppc
15
movements
12
posterior parietal
12
parietal cortex
12
task performance
12
ppc activation
12
motor
10

Similar Publications

The aim of this study was to evaluate the efficacy of thermography in assessing the impact of regular physical effort on changes in the body surface temperature of the upper body parts of young racehorses. The study involved monitoring 33 racehorses aged 3 years in 3 imaging sessions over a period of 3 months. Temperature measurements of the neck and upper part of the forelimbs and hindlimbs from both sides were taken just before and after training.

View Article and Find Full Text PDF

The superior colliculus directs goal-oriented forelimb movements.

Cell Rep

December 2024

Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India. Electronic address:

Skilled forelimb control is essential for daily living, yet our understanding of its neural mechanisms, although extensive, remains incomplete. Here, we present evidence that the superior colliculus (SC), a major midbrain structure, is necessary for accurate forelimb reaching in mice. We found that neurons in the lateral SC are active during goal-directed reaching, and by employing chemogenetic and phase-specific optogenetic silencing of these neurons, we show that the SC causally facilitates reach accuracy.

View Article and Find Full Text PDF

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats.

View Article and Find Full Text PDF

Future spinal reflex is embedded in primary motor cortex output.

Sci Adv

December 2024

Department of Developmental Physiology, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi 4448585, Japan.

Mammals can execute intended limb movements despite the fact that spinal reflexes involuntarily modulate muscle activity. To generate appropriate muscle activity, the cortical descending motor output must coordinate with spinal reflexes, yet the underlying neural mechanism remains unclear. We simultaneously recorded activities in motor-related cortical areas, afferent neurons, and forelimb muscles of monkeys performing reaching movements.

View Article and Find Full Text PDF

Musculoskeletal disease (MSD) is common in ageing cats, resulting in chronic pain and mobility impairment, but diagnosis can be challenging. We hypothesised that there would be differences between cats with and without MSD in paw pressure and spatiotemporal and kinetic gait metrics. A cohort of 53 cats, aged between 7 and 10 years from the North West of the United Kingdom, underwent an orthopaedic examination and walked on a pressure sensitive walkway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!