Gastric intestinal metaplasia is a precursor for gastric dysplasia, which is in turn, a risk factor for gastric adenocarcinoma. Gastric metaplasia and dysplasia are known as gastric precancerous lesions (GPLs), which are essential stages in the progression from normal gastric mucosa to gastric cancer (GC) or gastric adenocarcinoma. Genetically-engineered mice have become essential tools in various aspects of GC research, including mechanistic studies and drug discovery. Studies in mouse models have contributed significantly to our understanding of the pathogenesis and molecular mechanisms underlying GPLs and GC. With the development and improvement of gene transfer technology, investigators have created a variety of transgenic and gene knockout mouse models for GPLs, such as H/K-ATPase transgenic and knockout mutant mice and gastrin gene knockout mice. Combined with Helicobacter infection, and treatment with chemical carcinogens, these mice develop GPLs or GC and thus provide models for studying the molecular biology of GC, which may lead to the discovery and development of novel drugs. In this review, we discuss recent progress in the use of genetically-engineered mouse models for GPL research, with particular emphasis on the importance of examining the gastric mucosa at the histological level to investigate morphological changes of GPL and GC and associated protein and gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prp.2018.10.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!