Functional Movement Screening as a Predictor of Mechanical Loading and Performance in Dancers.

J Dance Med Sci

Sports Injuries Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire, United Kingdom.

Published: December 2018

Dance requires effective functional movement for the prevention of injury, with implications for the biomechanical response to performance. This study investigated the efficacy of the Functional Movement Screening (FMS) in predicting mechanical loading during the Dance Aerobic Fitness Test (DAFT). Twenty-five university dancers (19 females; age: 20.3 ± 0.94 years; height: 162.55 ± 0.05 cm; mass: 58.73 ± 6.3 kg; and 6 males; age: 21.08 ± 2.01 years; height: 175 ± 6.54 cm; mass: 68.16 ± 4.97 kg) were screened using the FMS. Subjects then completed the DAFT with a GPS-mounted triaxial accelerometer located at the cervico-thoracic junction. Accelerometry data were sampled at 100 Hz and used to calculate total accumulated PlayerLoad, Playerload medial-lateral (PL), PlayerLoad anterior-posterior (PL), and PlayerLoad vertical (PL) over the duration of the DAFT. Linear regression analysis was used to determine the strength of correlation between FMS and PlayerLoad, PL, PL, and PL, and forward stepwise hierarchical modelling was performed to establish which FMS components were the primary predictors of mechanical loading. The Deep Squat (DS) demonstrated statistical significance for PL and PL. The non-dominant Hurdle Step (HS) was a statistically significant predictor of PL. The FMS composite score was a statistically significant predictor for PL. Forward stepwise regression analysis demonstrated that DS was the sole predictor for PL and the primary predictor for PL. Non-dominant HS was identified as the primary predictor of PL. It is concluded that the DS, non-dominant HS, and the FMS composite score can be used to predict mechanical loading in performance of the DAFT, which may have implications for dance performance and injury prevention.

Download full-text PDF

Source
http://dx.doi.org/10.12678/1089-313X.22.4.203DOI Listing

Publication Analysis

Top Keywords

mechanical loading
16
functional movement
12
movement screening
8
loading performance
8
years height
8
regression analysis
8
forward stepwise
8
statistically predictor
8
fms composite
8
composite score
8

Similar Publications

measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.

View Article and Find Full Text PDF

Biomechanical properties of a mandibular first molar with different cavity designs [traditional access cavities (TEC-I & TEC-II), ninja access cavity (NEC), conservative access cavity (CEC), truss access cavity (Tr-EC), caries-driven access cavity (Cd-EC), caries-driven truss access cavity (Cd-TrEC)] were compared using finite element (FE) analysis. Models were subjected to three different loads. The highest stress distribution was observed on the enamel surface of the Cd-EC design and the dentin surface of the TEC-II.

View Article and Find Full Text PDF

Understanding the mechanical properties of Rosa sterilis S.D. Shi is important for the design and improvement of related mechanical equipment for planting, picking, processing, and transporting Rosa sterilis S.

View Article and Find Full Text PDF

Owing to the differences in sedimentary environments in the mining areas of western China, the mechanical properties of rocks in this region are significantly different from those in the central and eastern regions. Therefore, uniaxial cyclic loading-unloading tests were conducted on fine sandstone found in many roof rocks to study the evolution laws of mechanical properties, deformation characteristics, acoustic emission (AE) parameters, and energy under cyclic loading and unloading conditions. The accumulated residual strain, dissipative energy, acoustic emission cumulative ringing counts, and cumulative energy were introduced to characterize the degree of rock damage.

View Article and Find Full Text PDF

Development of multifunctional PAA-alginate-carboxymethyl cellulose hydrogel-loaded fiber-reinforced biomimetic scaffolds for controlled release of curcumin.

Int J Biol Macromol

January 2025

MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Center for Next-Generation Sensor Research and Development, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:

Critical-sized bone defects in osteosarcoma treatment demand multifunctional scaffolds that must effectively integrate two key functions, promoting osteogenesis and delivering targeted chemoprevention. This study introduces a dual-component system featuring pH-responsive hydrogels and hydroxyapatite-based fiber-reinforced biomimetic scaffolds designed for controlled and localized curcumin delivery, while addressing its solubility and stability issues. The hydrogel system comprises a double network of polyacrylic acid, sodium alginate, carboxymethyl cellulose, and potato starch, specifically modified to encapsulate curcumin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!