Background: Osteosarcoma (OSA) is the most common bone cancer in canines. Both transforming growth factor beta (TGFβ) and Hippo pathway mediators have important roles in bone development, stemness, and cancer progression. The role of Hippo signalling effectors TAZ and YAP has never been addressed in canine OSA. Further, the cooperative role of TGFβ and Hippo signalling has yet to be explored in osteosarcoma. To address these gaps, this study investigated the prognostic value of TAZ and YAP alone and in combination with pSmad2 (a marker of active TGFβ signalling), as well as the involvement of a TGFβ-Hippo signalling crosstalk in tumourigenic properties of OSA cells in vitro. An in-house trial tissue microarray (TMA) which contained 16 canine appendicular OSA cases undergoing standard care and accompanying follow-up was used to explore the prognostic role of TAZ, YAP and pSmad2. Published datasets were used to test associations between TAZ and YAP mRNA levels, metastasis, and disease recurrence. Small interfering RNAs specific to TAZ and YAP were utilized in vitro alone or in combination with TGFβ treatment to determine their role in OSA viability, proliferation and migration.

Results: Patients with low levels of both YAP and pSmad2 when evaluated in combination had a significantly longer time to metastasis (log-rank test, p = 0.0058) and a longer overall survival (log rank test, p = 0.0002). No similar associations were found for TAZ and YAP mRNA levels. In vitro, TAZ knockdown significantly decreased cell viability, proliferation, and migration in metastatic cell lines, while YAP knockdown significantly decreased viability in three cell lines, and migration in two cell lines, derived from either primary tumours or their metastases. The impact of TGFβ signaling activation on these effects was cell line-dependent.

Conclusions: YAP and pSmad2 have potential prognostic value in canine appendicular osteosarcoma. Inhibiting YAP and TAZ function could lead to a decrease in viability, proliferation, and migratory capacity of canine OSA cells. Assessment of YAP and pSmad2 in larger patient cohorts in future studies are needed to further elucidate the role of TGFβ-Hippo signalling crosstalk in canine OSA progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258471PMC
http://dx.doi.org/10.1186/s12917-018-1651-5DOI Listing

Publication Analysis

Top Keywords

taz yap
28
yap psmad2
16
yap
12
hippo signalling
12
canine osa
12
cell lines
12
tgfβ signalling
8
tgfβ hippo
8
taz
8
tgfβ-hippo signalling
8

Similar Publications

The TEAD family of transcription factors are best known as the DNA-binding factor in the Hippo pathway, where they act by interacting with transcriptional coactivators YAP and TAZ (YAP/TAZ). Despite the importance of the Hippo pathway, the in vivo functions of TEAD in mammals have not been well established. By comparing mouse mutants lacking TEAD1 and TEAD2 (TEAD1/2) to those lacking YAP/TAZ, we found that TEAD1/2 have both YAP/TAZ-dependent and -independent functions during ventral telencephalon development.

View Article and Find Full Text PDF

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

Exploring the Revolutionary Impact of YAP Pathways on Physical and Rehabilitation Medicine.

Biomolecules

January 2025

Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy.

Cellular behavior is strongly influenced by mechanical signals in the surrounding microenvironment, along with external factors such as temperature fluctuations, changes in blood flow, and muscle activity, etc. These factors are key in shaping cellular states and can contribute to the development of various diseases. In the realm of rehabilitation physical therapies, therapeutic exercise and manual treatments, etc.

View Article and Find Full Text PDF

Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.

View Article and Find Full Text PDF

WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by loss of function.

Sci Adv

January 2025

Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to gene mutations. Mice with deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!