Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.

BMC Biotechnol

Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.

Published: November 2018

Background: The creation of functional skeletal muscle via tissue engineering holds great promise without sacrificing healthy donor tissue. Different cell types have been investigated regarding their myogenic differentiation potential under the influence of various media supplemented with growth factors. Yet, most cell cultures include the use of animal sera, which raises safety concerns and might lead to variances in results. Electrospun nanoscaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining both biocompatibility and stability. We therefore aimed to develop a serum-free myogenic differentiation medium for the co-culture of primary myoblasts (Mb) and mesenchymal stromal cells derived from the bone marrow (BMSC) and adipose tissue (ADSC) on electrospun poly-ε-caprolacton (PCL)-collagen I-nanofibers.

Results: Rat Mb were co-cultured with rat BMSC (BMSC/Mb) or ADSC (ADSC/Mb) two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-nanofibers. Differentiation media contained either AIM V, AIM V and Ultroser® G, DMEM/Ham's F12 and Ultroser® G, or donor horse serum (DHS) as a conventional differentiation medium. In 2D co-culture groups, highest upregulation of myogenic markers could be induced by serum-free medium containing DMEM/Ham's F12 and Ultroser® G (group 3) after 7 days. Alpha actinin skeletal muscle 2 (ACTN2) was upregulated 3.3-fold for ADSC/Mb and 1.7-fold for BMSC/Mb after myogenic induction by group 3 serum-free medium when compared to stimulation with DHS. Myogenin (MYOG) was upregulated 5.2-fold in ADSC/Mb and 2.1-fold in BMSC/Mb. On PCL-collagen I-nanoscaffolds, ADSC showed a higher cell viability compared to BMSC in co-culture with Mb. Myosin heavy chain 2, ACTN2, and MYOG as late myogenic markers, showed higher gene expression after long term stimulation with DHS compared to serum-free stimulation, especially in BMSC/Mb co-cultures. Immunocytochemical staining with myosin heavy chain verified the presence of a contractile apparatus under both serum free and standard differentiation conditions.

Conclusions: In this study, we were able to myogenically differentiate mesenchymal stromal cells with myoblasts on PCL-collagen I-nanoscaffolds in a serum-free medium. Our results show that this setting can be used for skeletal muscle tissue engineering, applicable to future clinical applications since no xenogenous substances were used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260685PMC
http://dx.doi.org/10.1186/s12896-018-0482-6DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
myogenic differentiation
12
mesenchymal stromal
12
stromal cells
12
pcl-collagen i-nanoscaffolds
12
tissue engineering
12
serum-free medium
12
primary myoblasts
8
myoblasts mesenchymal
8
muscle tissue
8

Similar Publications

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

Objective: Skeletal muscle fat infiltration (myosteatosis) increases with age and is an emerging risk factor for dementia. We aimed to determine the association between myosteatosis and cognitive decline among middle-aged White and Black Americans.

Methods: Data were on men (n=1,080; 41.

View Article and Find Full Text PDF

Plasma protein levels provide important insights into human disease, yet a comprehensive assessment of plasma proteomics across organs is lacking. Using large-scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging associations, identifying both organ-specific and organ-shared proteomic relations, along with their enriched protein-protein interaction networks and biological pathways.

View Article and Find Full Text PDF

Alterations in energy metabolism may drive fatigue in older age, but prior research primarily focused on skeletal muscle energetics without assessing other systems, and utilized self-reported measures of fatigue. We tested the association between energy metabolism in the brain and an objective measure of fatigability in the Study of Muscle, Mobility and Aging (N=119, age 76.8±4.

View Article and Find Full Text PDF

Background: The skeletal muscle has mainly a structural function and plays a role in human's metabolism. Besides, the association between sleep quality and muscle mass, in the form of sarcopenia, has been reported. This study aimed to assess whether changes of skeletal muscle mass (SMM) over time are associated with baseline sleep duration and disturbances in a resource-constrained adult Peruvian population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!