Two-phase gas-liquid microfluidic reactors provide shear processing control of SN-38-loaded polymer nanoparticles (SN-38-PNPs). We prepare SN-38-PNPs from the block copolymer poly(methyl caprolactone- co-caprolactone)- block-poly(ethylene oxides) (P(MCL- co-CL)- b-PEO) using bulk and microfluidic methods and at different drug-to-polymer loading ratios and on-chip flow rates. We show that, as the microfluidic flow rate ( Q) increases, encapsulation efficiency and drug loading increase and release half times increase. Slower SN-38 release is obtained at the highest Q value ( Q = 400 μL/min) than is achieved using a conventional bulk preparation method. For all SN-38-PNP formulations, we find a dominant population (by number) of nanosized particles (<50 nm) along with a small number of larger aggregates (>100 nm). As Q increases, the size of aggregates decreases through a minimum and then increases, attributed to a flow-variable competition of shear-induced particle breakup and shear-induced particle coalescence. IC and IC values of the various SN-38-PNPs against MCF-7 cells show strong flow rate dependencies that mirror trends in particle size. SN-38-PNPs manufactured on-chip at intermediate flow rates show both minimum particle sizes and maximum potencies with a significantly lower IC value than the bulk-prepared sample. Compared to conventional bulk methods, microfluidic shear processing in two-phase reactors provides controlled manufacturing routes for optimizing and improving the properties of SN-38 nanomedicines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.8b00874DOI Listing

Publication Analysis

Top Keywords

shear processing
12
sn-38-loaded polymer
8
polymer nanoparticles
8
processing control
8
flow rates
8
flow rate
8
conventional bulk
8
shear-induced particle
8
microfluidic
5
microfluidic manufacturing
4

Similar Publications

Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.

View Article and Find Full Text PDF

Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution.

View Article and Find Full Text PDF

Formulation development and scale-up of dutasteride liquisolid tablets.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.

Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.

View Article and Find Full Text PDF

This study aimed to develop gastroretentive tablets based on mucoadhesive-floating systems with encapsulated gentian (, Gentianaceae) root extract to overcome the low bioavailability and short elimination half-life of gentiopicroside, a dominant bioactive compound with systemic effect. The formulation also aimed to promote the local action of the extract in the stomach. Tablets were obtained by direct compression of sodium bicarbonate (7.

View Article and Find Full Text PDF

In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!