Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The nucleosome core particle (NCP) is the basic packaging unit of DNA. Recently reported structures of the NCP suggest that the histone octamer undergoes conformational changes during the process of DNA translocation around the histone octamer. Herein, we demonstrate with long-time all-atomistic molecular dynamics simulations that the histone tails play a critical role in this nucleosome repositioning. We simulate the NCP at high salt concentrations, an order of magnitude higher than physiological conditions, to screen the electrostatic interactions. We find that the positively charged H2B tail collapses and complexes with the minor groove of nucleosomal DNA. Upon collapse of the tail, counterions are released. This promotes the formation of a ∼10 bp loop of nucleosomal DNA. The complexation of the tail increases the local flexibility of the DNA, as characterized by local force constants. Using normal mode analysis, we identify a "wave-like motion" of nucleosomal DNA. We perform umbrella sampling to characterize two possible pathways of the initial stages of unwrapping, symmetric and asymmetric. These results suggest that regulation of the histone tail interactions with nucleosomal DNA may play a critical role in nucleosomal dynamics by acting as a switch to determine the initial pathway of unwrapping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b07881 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!