PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions.

Int J Mol Sci

Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, Mexico.

Published: November 2018

Phosphoinositide 3-kinase (PI3K) signaling contributes to a variety of processes, mediating many aspects of cellular function, including nutrient uptake, anabolic reactions, cell growth, proliferation, and survival. Less is known regarding its critical role in neuronal physiology, neuronal metabolism, tissue homeostasis, and the control of gene expression in the central nervous system in healthy and diseased states. The aim of the present work is to review cumulative evidence regarding the participation of PI3K pathways in neuronal function, focusing on their role in neuronal metabolism and transcriptional regulation of genes involved in neuronal maintenance and plasticity or on the expression of pathological hallmarks associated with neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321294PMC
http://dx.doi.org/10.3390/ijms19123725DOI Listing

Publication Analysis

Top Keywords

pi3k signaling
8
role neuronal
8
neuronal metabolism
8
neuronal
5
signaling neurons
4
neurons central
4
central node
4
node control
4
control multiple
4
multiple functions
4

Similar Publications

Background: Leukemia may form at any age, from newborns to the elderly, and accounts for considerable mortality worldwide.

Objectives: Nerolidol (NRD) is isolated from the aromatic florae oils and was found to have anticancer activities. However, the role of NRD in antiproliferative and apoptosis actions in acute lymphoblastic leukemia (ALL) is unclear.

View Article and Find Full Text PDF

Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths in the United States, posing a significant threat to female health. Late-stage diagnoses, driven by elusive symptoms often masquerading as gastrointestinal issues, contribute to a concerning 70% of cases being identified in advanced stages. While early-stage OC brags a 90% cure rate, progression involving pelvic organs or extending beyond the peritoneal cavity drastically diminishes it.

View Article and Find Full Text PDF

This study aims to investigate the mechanism of Diels et Gilg flavonoids (THF) on acute hepatic injury (AHI). First, high-performance liquid chromatography (HPLC) fingerprints were established to obtain the main chemical components of THF. According to the network pharmacology databases, collect active targets of AHI and potential targets.

View Article and Find Full Text PDF

Gastric cancer (GC) has become a major challenge in oncology research, primarily due to its detection at advanced stages. In this study, we identified and validated the pharmacological mechanisms involved in treating gastric cancer using an integrated approach combining network pharmacology, molecular docking, and a dynamic approach. Gastric cancer-related genes were obtained from DisGeNET, Genecard, and Malacard databases, while potential targets of bioactive compounds were predicted using SwissTargetPrediction.

View Article and Find Full Text PDF

Introduction: Lung cancer is recognized as a highly lethal disease, demanding swift and accurate solutions. Previous analysis showed the cytotoxic impact of extract containing ergost-22-en-3-one and ergost-7-en3-ol against A549 lung cancer cells, with an IC value of 9.38 μg/mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!