Surface regeneration and reusability of label-free DNA biosensors based on weak polyelectrolyte-modified capacitive field-effect structures.

Biosens Bioelectron

Institute of Nano- and Biotechnologies, FH Aachen, Campus Jülich, 52428 Jülich, Germany; Institute of Complex Systems Bioelectronics (ICS-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Electronic address:

Published: February 2019

The reusability of capacitive field-effect electrolyte-insulator-semiconductor (EIS) sensors modified with a cationic weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) for the label-free electrical detection of single-stranded DNA (ssDNA), in-solution- and on-chip-hybridized double-stranded DNA (dsDNA) has been studied. It has been demonstrated that via simply regeneration of the gate surface of the EIS sensor by means of an electrostatic adsorption of a new PAH layer, the same biosensor can be reused for at least five DNA-detection measurements. Because of the reversal of the charge sign of the outermost layer after each surface modification with the cationic PAH or negatively charged DNA molecules, the EIS-biosensor signal exhibits a zigzag-like behavior. The amplitude of the signal changes has a tendency to decrease with increasing number of macromolecular layers. The direction of the EIS-signal shifts can serve as an indicator for a successful DNA-immobilization or -hybridization process. In addition, we observed that the EIS-signal changes induced by each surface-modification step (PAH adsorption, immobilization of ssDNA or dsDNA molecules and on-chip hybridization of complementary target cDNA) is decreased with increasing the ionic strength of the measurement solution, due to the more efficient macromolecular charge-screening by counter ions. The results of field-effect experiments were supported by fluorescence-intensity measurements of the PAH- or DNA-modified EIS surface using various fluorescence dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.11.019DOI Listing

Publication Analysis

Top Keywords

capacitive field-effect
8
surface
4
surface regeneration
4
regeneration reusability
4
reusability label-free
4
dna
4
label-free dna
4
dna biosensors
4
biosensors based
4
based weak
4

Similar Publications

High-performance 2D electronic devices enabled by strong and tough two-dimensional polymer with ultra-low dielectric constant.

Nat Commun

December 2024

Department of Materials Science and NanoEngineering and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.

As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.

View Article and Find Full Text PDF

In this paper, a new label-free DNA nanosensor based on a top-gated (TG) metal-ferroelectric-metal (MFM) graphene nanoribbon field-effect transistor (TG-MFM GNRFET) is proposed through a simulation approach. The DNA sensing principle is founded on the dielectric modulation concept. The computational method employed to evaluate the proposed nanobiosensor relies on the coupled solutions of a rigorous quantum simulation with the Landau-Khalatnikov equation, considering ballistic transport conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The graphene field-effect transistor (GFET) biosensor is an advanced tool for detecting biomolecules, known for its high conductivity and label-free functionality, but struggles with sensitivity due to free cations in solution.
  • A new method called cation enrichment electric field modulation strategy (CEEFMS) enhances the sensor's capacitance and voltage response, improving detection capabilities.
  • The developed cation-enriched rough Nafion/graphene FET (CENG-FET) successfully detects RNA at very low concentrations (attomolar levels) and demonstrates a broad detection range, leading to more accurate biomolecular sensing strategies.
View Article and Find Full Text PDF

The emergence of 2D ferroelectrics, sliding ferroelectrics, and 2D ferroelectric semiconductors has greatly expanded the potential applications of two-dimensional ferroelectric field-effect transistors (2D FeFETs) in nonvolatile memory, neuromorphic synapses, and negative capacitance. However, the interaction between ferroelectric and semiconductor layers remains not well understood, and characterization methods to correlate carriers and polarization dynamics at the nanoscale are still lacking. Utilizing in situ scanning microwave impedance microscopy and piezoresponse force microscopy measurements, we employed a Pb(ZrTi)O/MoS-based 2D FeFET as an example to reveal, with high spatial resolution, the microscopic redistribution of carriers.

View Article and Find Full Text PDF

A framework for electrolyte-gated organic transistors (EGOTs) that unifies the view of interfacial capacitive coupling of electrolyte-gated organic field-effect transistors (EGOFETs) with the volumetric capacitive coupling in organic electrochemical transistors (OECTs) is proposed. The EGOT effective capacitance arises from in-series capacitances of the electrolyte/gate electrode and electrolyte/channel interfaces, and the chemical capacitance of the organic semiconductor channel whose weight with respect to the interfacial capacitance is modulated by the charge carrier density, hence by the gate voltage. The expression for chemical capacitance is derived from the DOS of the organic semiconductor, which it is assumed to exhibit exponential energy disorder in the HOMO-LUMO gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!