To quantify the fine-scale spatial variations and local source impacts of urban ultrafine particle (UFP) concentrations, we conducted 3-6 weeks of continuous measurements of particle number (a proxy for UFP) and other air pollutant (CO, NO, and PM) concentrations at 32 sites in Pittsburgh, Pennsylvania during the winters of 2017 and 2018. Sites were selected to span a range of urban land use attributes, including urban background, near local and arterial roads, traffic intersections, urban street canyon, near-highway, near large industrial source, and restaurant density. The spatial variations in urban particle number concentrations varied by about a factor of three. Particle number concentrations are 2-3 times more spatially heterogeneous than PM mass. The observed order of spatial heterogeneity is UFP > NO > CO > PM. On average, particle number concentrations near local roads with a cluster of restaurants and near arterial roads are roughly two times higher than the urban background. Particle number concentrations in the urban street canyon, downwind of a major highway, and near large industrial sources are 2-4 times higher than background concentrations. While traffic is known as an important contributor to particle number concentrations, restaurants and industrial emissions also contribute significantly to spatial variations in Pittsburgh. Particle size distribution measurements using a mobile laboratory show that the local spatial variations in particle number concentrations are dictated by concentrations of particles smaller than 50 nm. A large fraction of urban residents (e.g., ~50%) in Pittsburgh live near local sources and are therefore exposed to 50%-300% higher particle number concentrations than urban background location. These locally emitted particles may have greater health effects than background particles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.11.197DOI Listing

Publication Analysis

Top Keywords

particle number
32
number concentrations
28
spatial variations
20
concentrations
12
urban background
12
particle
11
urban
10
variations local
8
local source
8
source impacts
8

Similar Publications

Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dry skin, severe itching, redness, and inflammation. Its complex etiology, involving genetic, immunological, and environmental factors, necessitates innovative therapeutic approaches. This study investigates nanostructured lipid carriers (NLCs) formulated with traditional fermented coconut (Cocos nucifera L.

View Article and Find Full Text PDF

A theoretical method is proposed for generating far-zone scattered fields with concentric ring-like intensity distribution by properly controlling the distribution characteristics of particles. As an example, a collection of anisotropic Gaussian-centered determinate particles with quasi-homogeneous distribution is discussed. The results show that the number and size of concentric rings can be flexibly adjusted by controlling the structural parameters of the collection of particles.

View Article and Find Full Text PDF

Occurrence of microplastics in the environment is well studied, but our knowledge of their distribution in specific locations, such as the sandboxes, which are integral parts of popular playgrounds for children, is limited. Pioneering research on the factors affecting the microplastic pollution of sandboxes in urban residential areas was conducted within three estates in Kielce, Poland. Sand samples (Σ27) were collected from nine sandboxes and examined for the presence of microplastics, using a simple quality control methodology proposed by the authors.

View Article and Find Full Text PDF

The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.

View Article and Find Full Text PDF

Timely and accurate detection of trace mycotoxins in agricultural products and food is significant for ensuring food safety and public health. Herein, a deep learning-assisted and entropy-driven catalysis (EDC)-Argonaute powered fluorescence single-particle aptasensing platform was developed for ultrasensitive detection of fumonisin B (FB) using single-stranded DNA modified with biotin and red fluorescence-encoded microspheres as a signal probe and streptavidin-conjugated magnetic beads as separation carriers. The binding of aptamer with FB releases the trigger sequence to mediate EDC cycle to produce numerous 5'-phosphorylated output sequences, which can be used as the guide DNA to activate downstream Argonaute (Ago) for cleaving the signal probe, resulting in increased number of fluorescence microspheres remaining in the final reaction supernatant after magnetic separation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!